Efficient algorithm for path-based range query in spatial databases

Author(s):  
Hoong Kee Ng ◽  
Hon Wai Leong ◽  
Ngai Lam Ho
2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Yongshan Liu ◽  
Dehan Kong

Present research of visible query focuses on points and segments in two-dimensional space, while disfigurements occur during processing of visible query in three-dimensional space. In this paper, Continuous Visible Range Query Based on Control Point (CVRQ-CP) is proposed to solve the visible query in a 3D spatial database. Firstly, the horizontal angle (HA) and Vertical Projection Angle (VPA) for 3D objects in a spatial database were used in the visibility testing method. The HA and VPA in the processing of the continuous visible query created visibility changes, defining and confirming the control point. Finally, the algorithm of Continuous Visible Range Query Based on Control Point (CVRQ-CP) was proposed. Verified by experiments, the CVRQ-CP algorithm correctly deals with the visible query of 3D spatial objects. The CVRQ-CP algorithm has better superior accuracy over present visible queries in 3D spatial databases.


Author(s):  
P.J. Phillips ◽  
J. Huang ◽  
S. M. Dunn

In this paper we present an efficient algorithm for automatically finding the correspondence between pairs of stereo micrographs, the key step in forming a stereo image. The computation burden in this problem is solving for the optimal mapping and transformation between the two micrographs. In this paper, we present a sieve algorithm for efficiently estimating the transformation and correspondence.In a sieve algorithm, a sequence of stages gradually reduce the number of transformations and correspondences that need to be examined, i.e., the analogy of sieving through the set of mappings with gradually finer meshes until the answer is found. The set of sieves is derived from an image model, here a planar graph that encodes the spatial organization of the features. In the sieve algorithm, the graph represents the spatial arrangement of objects in the image. The algorithm for finding the correspondence restricts its attention to the graph, with the correspondence being found by a combination of graph matchings, point set matching and geometric invariants.


2016 ◽  
Vol 2016 (7) ◽  
pp. 1-6
Author(s):  
Sergey Makov ◽  
Vladimir Frantc ◽  
Viacheslav Voronin ◽  
Igor Shrayfel ◽  
Vadim Dubovskov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document