visible range
Recently Published Documents





Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 271
Daniele Capista ◽  
Maurizio Passacantando ◽  
Luca Lozzi ◽  
Enver Faella ◽  
Filippo Giubileo ◽  

We propose a simple method to fabricate a photodetector based on the carbon nanotube/silicon nitride/silicon (CNT/Si3N4/Si) heterojunction. The device is obtained by depositing a freestanding single-wall carbon nanotube (SWCNT) film on a silicon substrate using a dry transfer technique. The SWCNT/Si3N4/Si heterojunction is formed without the thermal stress of chemical vapor deposition used for the growth of CNTs in other approaches. The CNT film works as a transparent charge collecting electrode and guarantees a uniform photocurrent across the sensitive area of the device. The obtained photodetector shows a great photocurrent that increases linearly with the incident light intensity and grows with the increasing wavelength in the visible range. The external quantum efficiency is independent of the light intensity and increases with the wavelength, reaching 65% at 640 nm.

2022 ◽  
Qian He ◽  
Junkai Ren ◽  
Yaodong Liu

Abstract In this study, carbon dots (CDs) synthesized by hydrothermal method with amino-rich surface exhibit tunable fluorescence across entire visible range by simply controlling the concentration. A comprehensive comparison has been performed for the first time between concentration-induced aggregation of the single-type CDs and electrostatic-induced agglomeration of opposite-charged CDs in terms of their fluorescence properties. Experimental results show that both the aggregation of CDs and internal absorption filtration are possible causes of the concentration-dependent fluorescence emission. Subsequently, the inter distance of adjacent CDs in their aggregates was enlarged by forming rigid double-stranded DNA (dsDNA) between adjacent CDs through base pairing. It is clear that the contact of CDs induces the changes of fluorescence emission and light absorption. Through a better understanding of the mechanisms behind concentration-induced multicolor emission, this work can provide a novel strategy to develop the advanced applications of CDs.

2022 ◽  
Vol 12 (1) ◽  
Chiara Schiattarella ◽  
Carlo Diaferia ◽  
Enrico Gallo ◽  
Bartolomeo Della Ventura ◽  
Giancarlo Morelli ◽  

AbstractThe self-assembling of small peptides not only leads to the formation of intriguing nanoarchitectures, but also generates materials with unexpected functional properties. Oligopeptides can form amyloid-like cross-β assemblies that are able to emit intrinsic photoluminescence (PL), over the whole near-UV/visible range, whose origin is still largely debated. As proton transfer between the peptide chain termini within the assembly is one of the invoked interpretations of this phenomenon, we here evaluated the solid state PL properties of a series of self-assembled hexaphenylalanine peptides characterized by a different terminal charge state. Overall, our data indicate that the charge state of these peptides has a marginal role in the PL emission as all systems exhibit very similar multicolour PL associated with a violation of the Kasha’s rule. On the other hand, charged/uncharged ends occasionally produce differences in the quantum yields. The generality of these observations has been proven by extending these analyses to the Aβ16–21 peptide. Collectively, the present findings provide useful information for deciphering the code that links the spectroscopic properties of these assemblies to their structural/electronic features.

2022 ◽  
M.A. Bouacheria ◽  
A. Djelloul ◽  
M. Adnane

Abstract Pure and Al-doped ZnO (AZO) thin films with different aluminium (Al) concentrations (Al: 0.5, 1, 2, and 3 wt.%) were prepared on p-type Si(100) substrate by a dip-coating technique using different zinc and aluminum precursors. The structural, morphological, optical and electrical properties of these films were investigated using a number of techniques, including the X-Ray Diffraction (XRD), scanning electron microscopy (SEM), Atomic force electron microscopy (AFM), ultraviolet–visible spectrophotometry, photoluminescence(PL) spectroscopy and four-point probe technique. The X-ray diffraction (XRD) results shown that the obtained (AZO) films were polycrystalline with a highly c-axis preferred (002) orientation, and the average crystallites size decrease from 28.32 to 24.61 nm with the increase in Al dopant concentration. The studies demonstrated that the ZnO film had a good transparency in the visible range with the maximum transmittance of 95% and the band gaps (Eg) varied from 3.16 to 3.26 eV by alumium doping. Scanning electron microscopy (SEM) images showed that the surface morphology of the films changed with increase of Al-doping. The photoluminescence spectra also showed changed with Al-doping.

riccardo castagna ◽  
Andrea Di Donato ◽  
Giuseppe Strangi ◽  
Daniele Eugenio Lucchetta

Abstract We recorded a permanent phase transmission grating on a thin film made by using a recently developed holographic photomobile mixture. The recorded grating pitch falls in the visible range and can be optically manipulated by using an external coherent or incoherent low power light source. When the external light source illuminates the grating the entire structure bends and, as a consequence, the optical properties of the grating change. This peculiarity makes it possible to use the recorded periodic structure as an all-optically controlled free standing thin colour selector or light switch depending on the source used to illuminate the grating itself. Additionally, it could open up new possibilities for stretchable and reconfigurable holograms controlled by light as well as thin devices for optically reconfigurable dynamic communications and displays.

2022 ◽  
Vol 30 (1) ◽  
pp. 343-350
Oluyamo Sunday Samuel ◽  
Ajanaku Olanrewaju ◽  
Adedayo Kayode David

This study investigates CNT-doped Cu2O thin film deposited by spray pyrolysis technique at a substrate temperature of 100°C. The samples were annealed at temperatures of 200°C and 230°C for 30 minutes. The effect of CNT doping on certain optical properties, such as extinction and absorption coefficients, a refractive index of doped Cu2O thin films were examined. The absorbance of the doped samples increases within the visible range and decreases in the ultraviolet range of the electromagnetic spectrum (EM). Both absorbance and extinction coefficients increased with temperature making the samples a good candidate for use as absorbance layer in device fabrication. In addition, there was an increase in direct bandgap with the increase in CNT concentration of the thin films. The result of the study revealed that CNT doping has a significant effect on the properties of Cu2O.

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 125
Mikhail A. Kotov ◽  
Andrey N. Shemyakin ◽  
Nikolay G. Solovyov ◽  
Mikhail Y. Yakimov

The study focused on increasing the efficiency of germicidal UV radiation by using highly diffuse reflective materials such as PTFE in irradiated cavities of UV air purifiers. In a conventional cylindrically symmetric cavity with a linear amalgam mercury lamp as UV-radiation source on the axis UV-radiation, flux directed from the lamp to the walls dropped from the axis to the periphery. To increase the UV irradiation, the walls are often made mirror-reflective, but the radiation flux distribution remained radially symmetric with a maximum on the source emitting surface in this case as well. When most of the emitted light is returned to the source after one reflection, the conditions of its operation are disturbed. If the walls are made of highly diffuse reflective materials, the radiation flux density inside the cavity increases on average, and its distribution becomes uniform and highly symmetric. Thus, the effect of amplification of the radiation flux due to the highly diffuse reflectivity of the walls increases with radius and reaches a maximum at the wall. Experiments were performed to demonstrate increasing amplification of germicidal UV radiation flux with a diffuse reflection coefficient in cylindrical cavities with walls of PTFE and ePTFE. The irradiation of the cavity wall was observed to increase up to 20 times at the resonant mercury line of 253.7 nm and up to 40 times at some non-resonant lines of the visible range due to highly diffuse reflectivity of the cavity walls. The flux amplification effect was limited by the diffuse reflectivity value of the walls and absorption coefficient of the radiation emitting surface. A formula for calculating the radiation flux amplification factor in a diffusely reflecting cylindrically symmetric cavity was derived for the case of Lambertian source and reflector, including wall reflectivity and source surface absorption coefficients. The effects of heating and cooling of the mercury lamp amalgam directly affected the amplification, and symmetrization of germicidal irradiation was observed and is discussed in the paper. Numerical calculations were performed by the ray tracing method. The calculated model was verified by comparing the numerical results with those of both the approximate theoretical consideration and experiments. The promising use of diffusely reflecting cylindrical cavities for UV air purifiers is discussed. Designs of air inlet and outlet ports that allow effective locking of germicidal radiation inside the UV air purifiers were considered. The results of this work may be of interest for further developments in the UV disinfection technique.

V. V. Starovoitov ◽  
Y. I. Golub ◽  
M. M. Lukashevich

Diabetic retinopathy (DR) is a disease caused by complications of diabetes. It starts asymptomatically and can end in blindness. To detect it, doctors use special fundus cameras that allow them to register images of the retina in the visible range of the spectrum. On these images one can see features, which determine the presence of DR and its grade. Researchers around the world are developing systems for the automated analysis of fundus images. At present, the level of accuracy of classification of diseases caused by DR by systems based on machine learning is comparable to the level of qualified medical doctors.The article shows variants for representation of the retina in digital images by different cameras. We define the task to develop a universal approach for the image quality assessment of a retinal image obtained by an arbitrary fundus camera. It is solved in the first block of any automated retinal image analysis system. The quality assessment procedure is carried out in several stages. At the first stage, it is necessary to perform binarization of the original image and build a retinal mask. Such a mask is individual for each image, even among the images recorded by one camera. For this, a new universal retinal image binarization algorithm is proposed. By analyzing result of the binarization, it is possible to identify and remove imagesoutliers, which show not the retina, but other objects. Further, the problem of no-reference image quality assessment is solved and images are classified into two classes: satisfactory and unsatisfactory for analysis. Contrast, sharpness and possibility of segmentation of the vascular system on the retinal image are evaluated step by step. It is shown that the problem of no-reference image quality assessment of an arbitrary fundus image can be solved.Experiments were performed on a variety of images from the available retinal image databases.

Tapan Ghosh ◽  
Madalasa Mondal ◽  
Ratheesh Vijayaraghavan

Understanding the variations in the solid-state optical signals of organic semiconductor materials upon subtle structural rearrangement or intermolecular interactions would help to extract the best performance in their electro-optic devices....

А.Ш. Асваров ◽  
А.К. Ахмедов ◽  
А.Э. Муслимов ◽  
В.М. Каневский

Since to the stability of the functional properties of a transparent conducting three-layer structure ZnO:Ga/Ag/ZnO:Ga is important for practical application, we studied its long-term durability and thermal stability in air environment. It has been demonstrated that after prolonged interaction with the air environment at room temperature (~ 1000 h) and further heat treatment in air at temperatures up to 450 ° C (up to 10 h), the three-layer structure retains its integrity and is characterized by a low sheet resistance Rs = 2.8 Ω/sq at average transmittance in the visible range Tav of 82.1%.

Sign in / Sign up

Export Citation Format

Share Document