Function Approximation Approach to the Inference of Normalized Gaussian Network Models of Genetic Networks

Author(s):  
S. Kimura ◽  
K. Sonoda ◽  
S. Yamane ◽  
K. Matsumura ◽  
M. Hatakeyama
2007 ◽  
Vol 3 ◽  
pp. 153-163 ◽  
Author(s):  
Shuhei Kimura ◽  
Katsuki Sonoda ◽  
Soichiro Yamane ◽  
Koki Matsumura ◽  
Mariko Hatakeyama

2008 ◽  
Vol 9 (1) ◽  
Author(s):  
Shuhei Kimura ◽  
Katsuki Sonoda ◽  
Soichiro Yamane ◽  
Hideki Maeda ◽  
Koki Matsumura ◽  
...  

2016 ◽  
Author(s):  
Changbong Hyeon ◽  
D. Thirumalai

AbstractUsing force as a probe to map the folding landscapes of RNA molecules has become a reality thanks to major advances in single molecule pulling experiments. Although the unfolding pathways under tension are complicated to predict studies in the context of proteins have shown that topology plays is the major determinant of the unfolding landscapes. By building on this finding we study the responses of RNA molecules to force by adapting Gaussian network model (GNM) that represents RNAs using a bead-spring network with isotropic interactions. Cross-correlation matrices of residue fluctuations, which are analytically calculated using GNM even upon application of mechanical force, show distinct allosteric communication as RNAs rupture. The model is used to calculate the force-extension curves at full thermodynamic equilibrium, and the corresponding unfolding pathways of four RNA molecules subject to a quasi-statically increased force. Our study finds that the analysis using GNM captures qualitatively the unfolding pathway of T. ribozyme elucidated by the optical tweezers measurement. However, the simple model is not sufficient to capture subtle features, such as bifurcation in the unfolding pathways or the ion effects, in the forced-unfolding of RNAs.


1995 ◽  
Vol 7 (2) ◽  
pp. 338-348 ◽  
Author(s):  
G. Deco ◽  
D. Obradovic

This paper presents a new learning paradigm that consists of a Hebbian and anti-Hebbian learning. A layer of radial basis functions is adapted in an unsupervised fashion by minimizing a two-element cost function. The first element maximizes the output of each gaussian neuron and it can be seen as an implementation of the traditional Hebbian learning law. The second element of the cost function reinforces the competitive learning by penalizing the correlation between the nodes. Consequently, the second term has an “anti-Hebbian” effect that is learned by the gaussian neurons without the implementation of lateral inhibition synapses. Therefore, the decorrelated Hebbian learning (DHL) performs clustering in the input space avoiding the “nonbiological” winner-take-all rule. In addition to the standard clustering problem, this paper also presents an application of the DHL in function approximation. A scaled piece-wise linear approximation of a function is obtained in the supervised fashion within the local regions of its domain determined by the DHL. For comparison, a standard single hidden-layer gaussian network is optimized with the initial centers corresponding to the DHL. The efficiency of the algorithm is demonstrated on the chaotic Mackey-Glass time series.


2014 ◽  
Vol 13 (06) ◽  
pp. 1450053 ◽  
Author(s):  
Meng Zhan ◽  
Suhong Li ◽  
Fan Li

Accurate prediction of the Debye–Waller temperature factor of proteins is of significant importance in the study of protein dynamics and function. This work explores the utility of wavelets for improving the performance of Gaussian network model (GNM). We propose two wavelet transformed Gaussian network models (wtGNM), namely a scale-one wtGNM and a scale-two wtGNM. Based on a set of 113 protein structures, it shows that the mean correlation with experimental results for the scale-one wtGNM is 0.714 and that for the scale-two wtGNM is 0.738. In contrast, the mean correlation for the original GNM is 0.594. Therefore, the wtGNM is a potential algorithm for improving the GNM prediction of protein B-factors.


Sign in / Sign up

Export Citation Format

Share Document