constitutive equations
Recently Published Documents


TOTAL DOCUMENTS

2196
(FIVE YEARS 179)

H-INDEX

89
(FIVE YEARS 7)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
M. H. B. M. Shariff

AbstractThis work proposes a generalized Lagrangian strain function $$f_\alpha$$ f α (that depends on modified stretches) and a volumetric strain function $$g_\alpha$$ g α (that depends on the determinant of the deformation tensor) to characterize isotropic/anisotropic strain energy functions. With the aid of a spectral approach, the single-variable strain functions enable the development of strain energy functions that are consistent with their infinitesimal counterparts, including the development of a strain energy function for the general anisotropic material that contains the general 4th order classical stiffness tensor. The generality of the single-variable strain functions sets a platform for future development of adequate specific forms of the isotropic/anisotropic strain energy function; future modellers only require to construct specific forms of the functions $$f_\alpha$$ f α and $$g_\alpha$$ g α to model their strain energy functions. The spectral invariants used in the constitutive equation have a clear physical interpretation, which is attractive, in aiding experiment design and the construction of specific forms of the strain energy. Some previous strain energy functions that appeared in the literature can be considered as special cases of the proposed generalized strain energy function. The resulting constitutive equations can be easily converted, to allow the mechanical influence of compressed fibres to be excluded or partial excluded and to model fibre dispersion in collagenous soft tissues. Implementation of the constitutive equations in Finite Element software is discussed. The suggested crude specific strain function forms are able to fit the theory well with experimental data and managed to predict several sets of experimental data.


2021 ◽  
Author(s):  
J.F. Wang ◽  
S.Q Shi ◽  
Y.Z. Liu ◽  
J.P. Yang ◽  
Lik-ho Tam

Abstract Owing to the excellent mechanical properties, polymethyl methacrylate (PMMA)/carbon nanotube (CNT) composite has been increasingly adopted in the aerospace field, which is usually subjected to various temperature conditions and supersonic aerodynamic loads. Using a molecular dynamics (MD)-based multiscale simulation, the nonlinear forced vibration of PMMA/CNT composite plate is investigated under coupled temperature and aerodynamic loads conditions. The longitudinal, transverse, and shear moduli of PMMA/single-walled CNT (SWCNT) nanocomposite obtained from MD simulation at different temperature and pressure levels are substituted into the extended rule of mixtures to establish the constitutive equations of PMMA/CNT composite plate. Meanwhile, Poisson’s ratio and thermal expansion coefficient of nanocomposite are used in the constitutive equations. Based on the third-order shear deformation theory, von-Karman nonlinear strain-displacement relation, and Hamilton’s principle, the partial differential equation of composite plate is derived, which is reduced into a set of coupled ordinary differential equations by applying Galerkin method and is solved using the fourth-order Runge-Kutta method. The phase portraits and time histories of composite plate are obtained under the complex loads including transverse harmonic excitation and aerodynamic pressure, which are applied to analyze the dynamic characteristics of system. This study reveals the nonlinear dynamic characteristics of PMMA/CNT composite plate, which contributes to the prediction of long-term performance of composite materials in aerospace field.


2021 ◽  
pp. 108128652110575
Author(s):  
Gennadi Mikhasev

The paper is concerned with the asymptotically consistent theory of nanoscale plates capturing the spatial nonlocal effects. The three-dimensional (3D) elasticity equations for a thin plate are used as the governing equations. In the general case, the plate is acted upon by dynamic body forces varying in the thickness direction, and by variable surface forces. The thickness of the plate is assumed to be greater than the characteristic micro/nanoscale measure and much smaller than the in-plane characteristic dimension (e.g., the wave or deformation length). The 3D constitutive equations of gradient elasticity are used to link the fields of nonlocal stresses and strains. Using the asymptotic approach, a sequence of relations for stresses and displacements in the form of polynomials in the transverse coordinate with coefficients depending on time and in-plane coordinates was obtained. The asymptotically consistent 2D differential equation governing vibration (or static deformation) of a plate accounting for both transverse shears and the spatial nonlocal contribution of the stress and strain fields was derived. It was revealed that capturing nonlocal effects in all directions leads to an increase in the correction factor compared with the well-known 2D theories based on kinematic hypotheses and the Eringen-type gradient constitutive equations. The effect of the internal length scales parameters on free low-frequency vibrations and displacements of a plate is discoursed.


2021 ◽  
Vol 42 (11) ◽  
pp. 1649-1662
Author(s):  
Peng Zhou

AbstractCoupling effects among different physical fields reflect the conversion of energies from one field into another substantially. For simple physical processes, their governing or constitutive equations all satisfy the law of conservation of energy (LCE). Then, an analysis is extended to the coupling effects. First, for the linear direct and converse piezoelectric and piezomagnetic effects, their constitutive equations guarantee that the total energy is conserved during the process of energy conversion between the elastic and electromagnetic fields. However, the energies are converted via the work terms, (βijkEi),kvj and (γijkHi),kvj, rather than via the energy terms, βijkEiejk and γijkHiejk. Second, for the generalized Villari effects, the electromagnetic energy can be treated as an extra contribution to the generalized elastic energy. Third, for electrostriction and magnetostriction, both effects are induced by the Maxwell stress. Moreover, their energies are purely electromagnetic and thus both have no converse effects. During these processes, the energies can be converted in three different ways, i.e., via the non-potential forces, via the cross-dependence of the energy terms, and directly via the electromagnetic interactions of ions and electrons. In the end, the general coupling processes which involve elastic, electromagnetic fields and diffusion are also analyzed. The advantages of using this energy formulation are that it facilitates discussion of the conversion of energies and provides better physical insights into the mechanisms of these coupling effects.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1910
Author(s):  
Simona Fialová ◽  
František Pochylý

This article is focused on the derivation of constitutive equations for magnetic liquids. The results can be used for both ferromagnetic and magnetorheological fluids after the introduced simplifications. The formulation of constitutive equations is based on two approaches. The intuitive approach is based on experimental experience of non-Newtonian fluids, which exhibit a generally non-linear dependence of mechanical stress on shear rate; this is consistent with experimental experience with magnetic liquids. In these general equations, it is necessary to determine the viscosity of a liquid as a function of magnetic induction; however, these equations only apply to the symmetric stress tensor and can only be used for an incompressible fluid. As a result of this limitation, in the next part of the work, this approach is extended by the asymmetry of the stress tensor, depending on the angular velocity tensor. All constitutive equations are formulated in Cartesian coordinates in 3D space. The second approach to determining constitutive equations is more general: it takes the basis of non-equilibrium thermodynamics and is based on the physical approach, using the definition of density of the entropy production. The production of entropy is expressed by irreversible thermodynamic flows, which are caused by the effect of generalized thermodynamic forces after disturbance of the thermodynamic equilibrium. The dependence between fluxes and forces determines the constitutive equations between stress tensors, depending on the strain rate tensor and the magnetization vector, which depends on the intensity of the magnetic field. Their interdependencies are described in this article on the basis of the Curie principle and on the Onsager conditions of symmetry.


Sign in / Sign up

Export Citation Format

Share Document