Stability analysis of grid-connected inverters with LCL-filter based on harmonic balance and Floquet theory

Author(s):  
Jing Bian ◽  
Hong Li ◽  
Trillion Q. Zheng
2013 ◽  
Vol 13 (5) ◽  
pp. 896-908 ◽  
Author(s):  
Xiao-Qiang Li ◽  
Xiao-Jie Wu ◽  
Yi-Wen Geng ◽  
Qi Zhang

Author(s):  
Fatemeh Afzali ◽  
Gizem D. Acar ◽  
Brian F. Feeny

In this paper, we study the response of a linear differential equation, for which the damping coefficient varies periodically in time. We use Floquet theory combined with the harmonic balance method to find the approximate solution and capture the stability criteria. Based on Floquet theory the approximate solution includes the exponential part having an unknown exponent, and a periodic part, which is expressed using a truncated series of harmonics. After substituting the assumed response in the equation, the harmonic balance method is applied. We use the characteristic equation of the truncated harmonic series to obtain the Floquet exponents. The free response and stability characteristics of the damped system for a set of parameters are shown.


2005 ◽  
Vol 1 (1) ◽  
pp. 71-80 ◽  
Author(s):  
Olivier A. Bauchau ◽  
Jielong Wang

The linearized stability analysis of dynamical systems modeled using finite element-based multibody formulations is addressed in this paper. The use of classical methods for stability analysis of these systems, such as the characteristic exponent method or Floquet theory, results in computationally prohibitive costs. Since comprehensive multibody models are “virtual prototypes” of actual systems, the applicability to numerical models of the stability analysis tools that are used in experimental settings is investigated in this work. Various experimental tools for stability analysis are reviewed. It is proved that Prony’s method, generally regarded as a curve-fitting method, is equivalent, and sometimes identical, to Floquet theory and to the partial Floquet method. This observation gives Prony’s method a sound theoretical footing, and considerably improves the robustness of its predictions when applied to comprehensive models of complex multibody systems. Numerical and experimental applications are presented to demonstrate the efficiency of the proposed procedure.


2014 ◽  
Vol 24 (12) ◽  
pp. 1450159 ◽  
Author(s):  
Fengxia Wang ◽  
Yuhui Qu

A rotating beam subjected to a torsional excitation is studied in this paper. Both quadratic and cubic geometric stiffening nonlinearities are retained in the equation of motion, and the reduced model is obtained via the Galerkin method. Saddle-node bifurcations and Hopf bifurcations of the period-1 motions of the model were obtained via the higher order harmonic balance method. The period-2 and period-4 solutions, which are emanated from the period-1 and period-2 motions, respectively, are obtained by the combined implementation of the harmonic balance method, Floquet theory, and Discrete Fourier transform (DFT). The analytical periodic solutions and their stabilities are verified through numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document