rotating beam
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 38)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Vol 13 (24) ◽  
pp. 5165
Author(s):  
Alexey Nekrasov ◽  
Alena Khachaturian

Extension of the existing airborne radars’ applicability is a perspective approach to the remote sensing of the environment. Here we investigate the capability of the rotating-beam radar installed over the fuselage for the sea surface wind measurement based on the comparison of the backscatter with the respective geophysical model function (GMF). We also consider the robustness of the proposed approach to the partial shading of the underlying water surface by the aircraft nose, tail, and wings. The wind retrieval algorithms have been developed and evaluated using Monte-Carlo simulations. We find our results promising both for the development of new remote sensing systems as well as the functional enhancement of existing airborne radars.


Author(s):  
J. González-Carbajal ◽  
A. Rincón-Casado ◽  
D. García-Vallejo ◽  
J. Domínguez

2021 ◽  
Author(s):  
Kai Zeng ◽  
Junji Pu ◽  
Yulie Wu ◽  
Dingbang Xiao ◽  
Xuezhong Wu
Keyword(s):  

2021 ◽  
Author(s):  
Linfeng Lyu ◽  
Weidong Zhu

Abstract A new operational modal analysis (OMA) method is developed for estimation of modal parameters (MPs) of a rotating structure (RS) subject to random excitation using a nonuniform rotating beam model, an image processing method, and an improved demodulation method. The solution to the governing equation of a nonuniform rotating beam is derived, which can be considered as the response of the beam measured by a continuously scanning laser Doppler vibrometer (CSLDV) system. A recently developed tracking CSLDV system can track and scan the RS. The image processing method determines the angular position of the RS so that the tracking CSLDV system can sweep its laser spot along a time-varying path on it. The improved demodulation method obtains undamped mode shapes (UMSs) of the RS by multiplying its measured response by sinusoids whose frequencies are its damped natural frequencies (DNFs) that are obtained from the fast Fourier transform of the measured response. Experimental investigation of the OMA method using the tracking CSLDV system is conducted, and MPs of a rotating fan blade (RFB), including DNFs and UMSs, with different constant speeds and its instantaneous MPs with a non-constant speed are estimated. Estimated first DNFs and UMSs of the stationary fan blade and RFB are compared with those from the lifting method that was previously developed by the authors.


2021 ◽  
pp. 1-30
Author(s):  
Linfeng Lyu ◽  
Weidong Zhu

Abstract A new operational modal analysis (OMA) method that is based on a rigorous nonuniform rotating beam vibration theory and an image processing method is developed to estimate modal parameters (MPs) of a rotating structure (RS) under random excitation using an improved demodulation method. The solution to the governing equation of a nonuniform rotating beam is derived, which can be considered as the response of the beam measured by a continuously scanning laser Doppler vibrometer (CSLDV) system. A recently developed tracking CSLDV system can track and scan the RS. The image processing method determines the angular position of the RS so that the tracking CSLDV system can sweep its laser spot along a time-varying scan path on it. The improved demodulation method obtains undamped mode shapes (UMSs) of the RS by multiplying its measured response by sinusoidal signals with its damped natural frequencies (DNFs) obtained from the fast Fourier transform of the measured response. Experimental investigation of the OMA method using the tracking CSLDV system is conducted, and MPs of a rotating fan blade (RFB), including DNFs and UMSs, with different constant speeds and its instantaneous MPs with a non-constant speed are estimated. Estimated first DNFs and UMSs of the stationary fan blade and RFB are compared with those from the lifting method that was previously developed by the authors.


Sign in / Sign up

Export Citation Format

Share Document