periodic part
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 10)

H-INDEX

6
(FIVE YEARS 1)

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2234
Author(s):  
Zu-Guang Ying ◽  
Yi-Qing Ni

A response analysis method for nonlinear beams with spatial distribution parameters and non-periodic supports was developed. The proposed method is implemented in four steps: first, the nonlinear partial differential equation of the beams is transformed into linear partial differential equations with space-varying parameters by using a perturbation method; second, the space-varying parameters are separated into a periodic part and a non-periodic part describing the periodicity defect, and the linear partial differential equations are separated into equations for the periodic and non-periodic parts; third, the equations are converted into ordinary differential equations with multiple modes coupling by using the Galerkin method; fourth, the equations are solved by using a harmonic balance method to obtain vibration responses, which are used to discover dynamic characteristics including the amplitude–frequency relation and spatial mode. The proposed method considers multiple vibration modes in the response analysis of nonlinear non-periodic structures and accounts for mode-coupling effects resulting from structural nonlinearity and parametric non-periodicity. Thus, it can handle nonlinear non-periodic structures with a high parameter-varying wave in wide frequency vibration. In numerical studies, a nonlinear beam with non-periodic supports (resulting in non-periodic distribution parameters or periodicity defect) under harmonic excitations was explored using the proposed method, which revealed some new dynamic response characteristics of this kind of structure and the influences of non-periodic parameters. The characteristics include remarkable variation in frequency response and spatial mode, and in particular, vibration localization and anti-localization. The results have potential applications in vibration control and the support damage detection of nonlinear structures with non-periodic supports.


2021 ◽  
Author(s):  
Moritz Gerster ◽  
Gunnar Waterstraat ◽  
Vladimir Litvak ◽  
Klaus Lehnertz ◽  
Alfons Schnitzler ◽  
...  

Electrophysiological power spectra typically consist of two components: An aperiodic part usually following an 1/f power law P∝1/fβ and periodic components appearing as spectral peaks. While the investigation of the periodic parts, commonly referred to as neural oscillations, has received considerable attention, the study of the aperiodic part has only recently gained more interest. The periodic part is usually quantified by center frequencies, powers, and bandwidths, while the aperiodic part is parameterized by the y-intercept and the 1/f exponent β. For investigation of either part, however, it is essential to separate the two components. In this article, we scrutinize two frequently used methods, FOOOF (Fitting Oscillations & One-Over-F) and IRASA (Irregular Resampling Auto-Spectral Analysis), that are commonly used to separate the periodic from the aperiodic component. We evaluate these methods using diverse spectra obtained with electroencephalography (EEG), magnetoencephalography (MEG), and local field potential (LFP) recordings relating to three independent research datasets. Each method and each dataset poses distinct challenges for the extraction of both spectral parts. The specific spectral features hindering the periodic and aperiodic separation are highlighted by simulations of power spectra emphasizing these features. Through comparison with the simulation parameters defined a priori, the parameterization error of each method is quantified. Based on the real and simulated power spectra, we evaluate the advantages of both methods, discuss common challenges, note which spectral features impede the separation, assess the computational costs, and propose recommendations on how to use them.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6314
Author(s):  
Florian Pfaff ◽  
Kailai Li ◽  
Uwe D. Hanebeck

The SE(2) domain can be used to describe the position and orientation of objects in planar scenarios and is inherently nonlinear due to the periodicity of the angle. We present a novel filter that involves splitting up the joint density into a (marginalized) density for the periodic part and a conditional density for the linear part. We subdivide the state space along the periodic dimension and describe each part of the state space using the parameters of a Gaussian and a grid value, which is the function value of the marginalized density for the periodic part at the center of the respective area. By using the grid values as weighting factors for the Gaussians along the linear dimensions, we can approximate functions on the SE(2) domain with correlated position and orientation. Based on this representation, we interweave a grid filter with a Kalman filter to obtain a filter that can take different numbers of parameters and is in the same complexity class as a grid filter for circular domains. We thoroughly compared the filters with other state-of-the-art filters in a simulated tracking scenario. With only little run time, our filter outperformed an unscented Kalman filter for manifolds and a progressive filter based on dual quaternions. Our filter also yielded more accurate results than a particle filter using one million particles while being faster by over an order of magnitude.


Author(s):  
А. А. Shlepkin ◽  
◽  
I. V. Sabodakh ◽  

One of the interesting classes of mixed groups ( i.e. groups that can contain both elements of finite order and elements of infinite order) is the class of Shunkov groups. The group $G$ is called Shunkov group if for any finite subgroup $H$ of $G$ in the quotient group $N_G(H)/H$, any two conjugate elements of prime order generate a finite group. When studying the Shunkov group $G$, a situation often arises when it is necessary to move to the quotient group of the group $G$ by some of its normal subgroup $N$. In which cases is the resulting quotient group $G/N$ again a Shunkov group? The paper gives a positive answer to this question, provided that the normal subgroup $N$ is locally finite and the orders of elements of the subgroup $N$ are mutually simple with the orders of elements of the quotient group $G/N$. Let $ \mathfrak{X}$ be a set of groups. A group $G$ is saturated with groups from the set $ \mathfrak{X}$ if any finite subgroup of $G$ is contained in a subgroup of $ G$ that is isomorphic to some group of $\mathfrak{X}$ . If all elements of finite orders from the group $G$ are contained in a periodic subgroup of the group $G$, then it is called the periodic part of the group $G$ and is denoted by $T(G)$. It is proved that the Shunkov group saturated with finite linear and unitary groups of degree 3 over finite fields has a periodic part that is isomorphic to either a linear or unitary group of degree 3 on a suitable locally finite field. \end{abstracte}


2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Fatemeh Afzali ◽  
Gizem D. Acar ◽  
Brian F. Feeny

Abstract The Floquet theory has been classically used to study the stability characteristics of linear dynamic systems with periodic coefficients and is commonly applied to Mathieu’s equation, which has parametric stiffness. The focus of this article is to study the response characteristics of a linear oscillator for which the damping coefficient varies periodically in time. The Floquet theory is used to determine the effects of mean plus cyclic damping on the Floquet multipliers. An approximate Floquet solution, which includes an exponential part and a periodic part that is represented by a truncated Fourier series, is then applied to the oscillator. Based on the periodic part, the harmonic balance method is used to obtain the Fourier coefficients and Floquet exponents, which are then used to generate the response to the initial conditions, the boundaries of instability, and the characteristics of the free response solution of the system. The coexistence phenomenon, in which the instability wedges disappear and the transition curves overlap, is recovered by this approach, and its features and robustness are examined.


2020 ◽  
Vol 25 (4) ◽  
pp. 10-17
Author(s):  
S. Steshenko ◽  
◽  

Subject and purpose. The scattering matrix of a semi-infinite slow-wave structure formed by grooves in a rectangular waveguide is investigated. The purpose was to develop a method for calculating a semi-infinite periodic structure. Methods and methodology. A generalization of the mode-matching technique to semi-infinite periodic structures is built. The fields of the periodic part of the structure are expanded in series of the eigenmodes of the periodic structure, taking into account the condition at infinity, which makes it possible to obtain a linear matrix equation for finding the scattering matrix. Only the propagating modes of the periodic structure were considered. To make these expansions reliable the fields were matched at a period somewhat distant from the junction of the regular waveguide with the periodic one. Results. Matrix equations for determining the blocks of the scattering matrix of a semi-infinite structure are obtained. A number of investigations are carried out to check the reliability of the equations obtained. These include test of convergence, reciprocity, energy balance, and conservation of the scattering matrix while adding one period to a semi-infinite structure. The main confirmation was obtained by comparing the scattering matrix of a finite fragment of the slow-wave structure, obtained in two ways: through the scattering matrices of semi-infinite slow-wave structure and through a cascade assembly of the scattering matrices of the waveguide elements that make up the structure. Conclusions. An algorithm for calculating the scattering matrix of a semi-infinite structure is obtained. It can be used to build a rigorous hot model of vacuum electronics devices using slow-wave structures.


2019 ◽  
Vol 9 (10) ◽  
pp. 2159 ◽  
Author(s):  
Bin Zhen ◽  
Zhenhua Li ◽  
Zigen Song

In this paper, the energy method is employed to analytically investigate the influence of time delay in signal transmission on synchronization between two coupled FitzHugh-Nagumo (FHN) neurons. Unlike pre-existing methods that deal with synchronization problems, our major idea is to consider the change rate of the energy of the synchronization error system, since the original system’s synchronization is equivalent to the disappearance of the energy of the error system. In rewriting the original coupled system in the corresponding energy coordinates based on the energy method, we find that the change rate of energy of the error system can be divided into two parts (periodic and non-periodic). The synchronization criterion for the original system can then be obtained by letting the non-periodic part of the change rate of the energy be less than zero. The correctness of the analysis is illustrated with numerical simulations. Our analytical results show that time delay in signal transmission has very significant effects on the synchronization between two FHN neurons. If the time delay in signal transmission is not taken into account in the two coupled FHN neurons, synchronous spikes cannot be achieved in the system for any given coupling strength. By adjusting the value of the time delay in signal transmission, the neural system can freely switch between neural rest and synchronous spikes. This means that time delay in signal transmission is crucial for the occurrence of synchronous spikes in the FHN neural system, which contributes to our understanding of the interaction between neurons. We analytically show the influence of the time delay on the synchronization between two FHN neurons, which was seldom considered by other researchers.


2019 ◽  
Vol 22 (2) ◽  
pp. 326-357 ◽  
Author(s):  
Peter Kern ◽  
Svenja Lage ◽  
Mark M. Meerschaert

Abstract It is well known that certain fractional diffusion equations can be solved by the densities of stable Lévy motions. In this paper we use the classical semigroup approach for Lévy processes to define semi-fractional derivatives, which allows us to generalize this statement to semistable Lévy processes. A Fourier series approach for the periodic part of the corresponding Lévy exponents enables us to represent semi-fractional derivatives by a Grünwald-Letnikov type formula. We use this formula to calculate semi-fractional derivatives and solutions to semi-fractional diffusion equations numerically. In particular, by means of the Grünwald-Letnikov type formula we provide a numerical algorithm to compute semistable densities.


2019 ◽  
Vol 8 (1) ◽  
pp. 513-522 ◽  
Author(s):  
Om Prakash Keshri ◽  
Vinod K. Gupta ◽  
Anand Kumar

Abstract In the present paper, a weakly nonlinear stability analysis is used to analyze the effect of time-periodic concentration/gravity modulation on mass transport. We have considered an infinite horizontal fluid layer with constant appliedmagnetic flux salted from above, subjected to an imposed time-periodic boundary concentration (ITBC) or gravity modulation (ITGM). In the case of ITBC, the concentration gradient between the plates of the fluid layer consists of a steady part and a time-dependent oscillatory part. The concentration of both walls is modulated. In the case of ITGM, the gravity fleld consists of two parts: a constant part and an externally imposed time periodic part, which can be realized by oscillating the fluid layer. We have expanded the infinitesimal disturbances in terms of power series of an amplitude of modulation, which is assumed to be small. Ginzburg-Landau equation is derived for dinding the rate of mass transfer. Effect of various parameters on the mass transport is also discussed. It is found that the mass transport can be controlled by suitably adjusting the frequency and amplitude of modulation.


Sign in / Sign up

Export Citation Format

Share Document