Optimized fuzzy system using genetic algorithm to detect faces in color images

Author(s):  
Bibi Somayeh Mousavi ◽  
Payman Moallem
2015 ◽  
Author(s):  
P. Sneha Latha ◽  
Pawan Kumar ◽  
Samruddhi Kahu ◽  
Kishor M. Bhurchandi

2021 ◽  
Author(s):  
Shahrooz Alimoradpour ◽  
Mahnaz Rafie ◽  
Bahareh Ahmadzadeh

Abstract One of the classic systems in dynamics and control is the inverted pendulum, which is known as one of the topics in control engineering due to its properties such as nonlinearity and inherent instability. Different approaches are available to facilitate and automate the design of fuzzy control rules and their associated membership functions. Recently, different approaches have been developed to find the optimal fuzzy rule base system using genetic algorithm. The purpose of the proposed method is to set fuzzy rules and their membership function and the length of the learning process based on the use of a genetic algorithm. The results of the proposed method show that applying the integration of a genetic algorithm along with Mamdani fuzzy system can provide a suitable fuzzy controller to solve the problem of inverse pendulum control. The proposed method shows higher equilibrium speed and equilibrium quality compared to static fuzzy controllers without optimization. Using a fuzzy system in a dynamic inverted pendulum environment has better results compared to definite systems, and in addition, the optimization of the control parameters increases the quality of this model even beyond the simple case.


Author(s):  
Sudipta Kr Ghosal ◽  
Jyotsna Kumar Mandal

In this chapter, a fragile watermarking scheme based on One-Dimensional Discrete Hartley Transform (1D-DHT) has been proposed to verify the authenticity of color images. One-Dimensional Discrete Hartley Transform (1D-DHT) converts each 1 x 2 sub-matrix of pixel components into transform domain. Watermark (along with a message digest MD) bits are embedded into the transformed components in varying proportion. To minimize the quality distortion, genetic algorithm (GA) based optimization is applied which yields the optimized component corresponding to each embedded component. Applying One-Dimensional Inverse Discrete Hartley Transform (1D-IDHT) on 1 x 2 sub-matrices of embedded components re-generates the pixel components in spatial domain. The reverse approach is followed by the recipient to retrieve back the watermark (along with the message digest MD) which in turn is compared against the re-computed Message Digest (MD') for authentication. Simulation results demonstrate that the proposed technique offers variable payload and less distortion as compared to existing schemes.


2020 ◽  
Vol 22 (8) ◽  
pp. 2449-2465
Author(s):  
Ke Zhang ◽  
Wen-Ning Hao ◽  
Xiao-Han Yu ◽  
Da-Wei Jin ◽  
Zhong-Hui Zhang

Sign in / Sign up

Export Citation Format

Share Document