control rules
Recently Published Documents


TOTAL DOCUMENTS

588
(FIVE YEARS 111)

H-INDEX

31
(FIVE YEARS 5)

Author(s):  
Song Kewei ◽  
Ze Zhang ◽  
Hu Wang ◽  
Fang Hui

In this study, we propose a novel robust online self-adaptive Proportional-Integral-Derivative (PID) control design for Brushless DC Motor (BLDCM) speed system under different operating conditions. The online adaptive tuning for PID parameters is realized accurately by optimizing the control rules of variable universe fuzzy inference with a modified genetic algorithm (GA). Based on the variable fuzzy inference theory, the method of solving contraction–expansion factor in real-time through fuzzy inference is proposed. Furthermore, the process to optimize two inference rules by GA is improved to get optimal control rules for adjusting PID parameters. Finally, multiple sets of simulations and experiments are conducted to validate the proposed controller in different conditions by building Simulink models and setting up experiment platforms. The results of this study not only demonstrate the effectiveness of the proposed controller but also provide technical suggestions for the speed control of BLDCM.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mathieu Genu ◽  
Anita Gilles ◽  
Philip S. Hammond ◽  
Kelly Macleod ◽  
Jade Paillé ◽  
...  

Bycatch, the undesirable and non-intentional catch of non-target species in marine fisheries, is one of the main causes of mortality of marine mammals worldwide. When quantitative conservation objectives and management goals are clearly defined, computer-based procedures can be used to explore likely population dynamics under different management scenarios and estimate the levels of anthropogenic removals, including bycatch, that marine mammal populations may withstand. Two control rules for setting removal limits are the Potential Biological Removal (PBR) established under the US Marine Mammal Protection Act and the Removals Limit Algorithm (RLA) inspired from the Catch Limit Algorithm (CLA) developed under the Revised Management Procedure of the International Whaling Commission. The PBR and RLA control rules were tested in a Management Strategy Evaluation (MSE) framework. A key feature of PBR and RLA is to ensure conservation objectives are met in the face of the multiple uncertainties or biases that plague real-world data on marine mammals. We built a package named RLA in the R software to carry out MSE of control rules to set removal limits in marine mammal conservation. The package functionalities are illustrated by two case studies carried out under the auspices of the Oslo and Paris convention (OSPAR) (the Convention for the Protection of the Marine Environment of the North-East Atlantic) Marine Mammal Expert Group (OMMEG) in the context of the EU Marine Strategy Framework Directive. The first case study sought to tune the PBR control rule to the conservation objective of restoring, with a probability of 0.8, a cetacean population to 80% of carrying capacity after 100 years. The second case study sought to further develop a RLA to set removals limit on harbor porpoises in the North Sea with the same conservation objective as in the first case study. Estimation of the removals limit under the RLA control rule was carried out within the Bayesian paradigm. Outputs from the functions implemented in the package RLA allows the assessment of user-defined performance metrics, such as time to reach a given fraction of carrying capacity under a given level of removals compared to the time needed given no removals.


2021 ◽  
Author(s):  
Donghoon Lee ◽  
Jia Yi Ng ◽  
Stefano Galelli ◽  
Paul Block

Abstract. The potential benefits of seasonal streamflow forecasts for the hydropower sector have been evaluated for several basins across the world, but with contrasting conclusions on the expected benefits. This raises the prospect of a complex relationship between reservoir characteristics, forecast skill and value. Here, we unfold the nature of this relationship by studying time series of simulated power production for 735 headwater dams worldwide. The time series are generated by running a detailed dam model over the period 1958–2000 with three operating schemes: basic control rules, perfect forecast-informed, and realistic forecast-informed. The realistic forecasts are issued by tailored statistical prediction models—based on lagged global and local hydro-climatic variables—predicting seasonal monthly dam inflows. As expected, results show that most dams (94 %) could benefit from perfect forecasts. Yet, the benefits for each dam vary greatly and are primarily controlled by the time-to-fill and the ratio between reservoir depth and hydraulic head. When realistic forecasts are adopted, 25 % of dams demonstrate improvements with respect to basic control rules. In this case, the likelihood of observing improvements is controlled not only by design specifications but also by forecast skill. We conclude our analysis by identifying two groups of dams of particular interest: dams that fall in regions expressing strong forecast accuracy and have the potential to reap benefits from forecast-informed operations, and dams with strong potential to benefit from forecast-informed operations but fall in regions lacking forecast accuracy. Overall, these results represent a first qualitative step towards informing site-specific hydropower studies.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Anh Son Tran ◽  
Ha Quang Thinh Ngo ◽  
Van Keo Dong ◽  
Anh Huy Vo

In the early stage of the 21st century, humankind is facing high medical risks. To the best of our knowledge, there is currently no efficient way to stop chains of infections, and hence citizens suffer significantly increasing numbers of diseases. The most important factor in this scenario is the lack of necessary equipment to cure disease and maintain our living. Once breath cannot be guaranteed, humans find themselves in a dangerous state. This study aimed to design, control, model, and simulate mechanical ventilator that is open-source structure, lightweight, and portable, which is proper for patients to cure themselves at home. In the scope of this research, the hardware platform for the mechanical design, implementation of control rules, and some trials of both simulations and experiments are presented as our methodology. The proposed design of ventilator newly features the bioinspired mechanism, finger-like actuator, and flow rate-based control. Firstly, the approximate evaluation of the lung model is presented with some physiological characteristics. Owing to this investigation, the control scheme was established to adapt to the biological body. Moreover, it is essential for the model to be integrated to determine the appropriate performance of the closed-loop system. Derived from these theoretical computations, the innovative concept of mechanical design was demonstrated using the open-source approach, and the real-world model was constructed. In order to estimate the driving torque, the hardware modeling was conducted using mathematical expressions. To validate the proposed approach, the overall system was evaluated using Matlab/Simulink, and experiments with the proposed platform were conducted in two situations: 20 lpm as a reference flow rate for 4 seconds and 45 lpm for 2.5 seconds, corresponding to normal breath and urgent breath. From the results of this study, it can be clearly observed that the system’s performance ensures that accurate airflow is provided, although the desired airflow fluctuates. Based on the test scenario in hardware, the RMS (root-mean-square) values of tracking errors in airflow for both cases were 1.542 and 1.767. The proposed design could deal with changes in airflow, and this machine could play a role as a proper, feasible, and robust solution to support human living.


2021 ◽  
Vol 243 ◽  
pp. 106049
Author(s):  
Madison A. Heller-Shipley ◽  
William T. Stockhausen ◽  
Benjamin J. Daly ◽  
André E. Punt ◽  
Scott E. Goodman

2021 ◽  
Vol 11 (5) ◽  
pp. 529-535
Author(s):  
Jihane El Mokhtari ◽  
Anas Abou El Kalam ◽  
Siham Benhaddou ◽  
Jean-Philippe Leroy

This article is devoted to the topic of coupling access and inference controls into security policies. The coupling of these two mechanisms is necessary to strengthen the protection of the privacy of complex systems users. Although the PrivOrBAC access control model covers several privacy protection requirements, the risk of inferring sensitive data may exist. Indeed, the accumulation of several pieces of data to which access is authorized can create an inference. This work proposes an inference control mechanism implemented through multidimensional analysis. This analysis will take into account several elements such as the history of access to the data that may create an inference, as well as their influence on the inference. The idea is that this mechanism delivers metrics that reflect the level of risk. These measures will be considered in the access control rules and will participate in the refusal or authorization decision with or without obligation. This is how the coupling of access and inference controls will be applied. The implementation of this coupling will be done via the multidimensional OLAP databases which will be requested by the Policy Information Point, the gateway brick of XACML to the various external data sources, which will route the inference measurements to the decision-making point.


Sign in / Sign up

Export Citation Format

Share Document