Genetic-Algorithm-Based Optimization of Fragile Watermarking in Discrete Hartley Transform Domain

Author(s):  
Sudipta Kr Ghosal ◽  
Jyotsna Kumar Mandal

In this chapter, a fragile watermarking scheme based on One-Dimensional Discrete Hartley Transform (1D-DHT) has been proposed to verify the authenticity of color images. One-Dimensional Discrete Hartley Transform (1D-DHT) converts each 1 x 2 sub-matrix of pixel components into transform domain. Watermark (along with a message digest MD) bits are embedded into the transformed components in varying proportion. To minimize the quality distortion, genetic algorithm (GA) based optimization is applied which yields the optimized component corresponding to each embedded component. Applying One-Dimensional Inverse Discrete Hartley Transform (1D-IDHT) on 1 x 2 sub-matrices of embedded components re-generates the pixel components in spatial domain. The reverse approach is followed by the recipient to retrieve back the watermark (along with the message digest MD) which in turn is compared against the re-computed Message Digest (MD') for authentication. Simulation results demonstrate that the proposed technique offers variable payload and less distortion as compared to existing schemes.

1998 ◽  
Vol 08 (03) ◽  
pp. 421-434
Author(s):  
GUOAN BI ◽  
YANQIU CHEN

This paper presents fast algorithms for the computation of discrete Hartley transform (DHT). When the sequence length N = p*q, where p and q are integers and relatively prime, the one dimensional DHT can be decomposed into p length-q DHT's and q length-p discrete Fourier transforms (DFT). Compared to other reported algorithms, the proposed one has a regular computational structure, provides flexibility for composite sequence lengths and achieves substantial savings on the required number of operations.


2014 ◽  
Vol 687-691 ◽  
pp. 3812-3817
Author(s):  
Yong Gang Fu

In this paper, a print-scan resilient image watermarking scheme based on Radon transform and DCT(discrete cosine transform) is proposed. The watermark is preprocessed with a chaotic sequence, then the host image is transformed to frequency domain by block DCT. The preprocessed watermark is adaptively embedded into the transform domain coefficients by modulating the relationship between neighbor coefficients. The watermark detection process is accomplished without referring to the original image. Simulation results show good robustness against several attacks, such Jpeg compression, cropping, filtering and so on.


Author(s):  
Santosh Kumar Singh ◽  
Jyotsna Singh

In our proposed watermark embedding system, the original audio is segmented into overlapping frames. The psychoacoustic auditory model has been utilized to calculate the global threshold in modified discrete cosine transform domain. The perceptual insignificant locations have been used to insert the appropriately scaled watermark in the transform domain. Blind detection of watermark has been performed. Simulation results indicate that the proposed watermarking system is perceptually transparent and robust against various kind of attacks such as AWGN addition and MP3 compression.


Sign in / Sign up

Export Citation Format

Share Document