Improving feature based object recognition in service robotics by disparity map based segmentation

Author(s):  
D Asanza ◽  
B Wirnitzer
1993 ◽  
Author(s):  
Gary P. Brown ◽  
Peter Forte ◽  
Ron Malyan ◽  
Peter Barnwell

2019 ◽  
Vol 25 (2) ◽  
pp. 127-130
Author(s):  
K.A. Shaheer Abubacker ◽  
J. Sutha ◽  
K.A. Shahul Hameed

Abstract This paper describes a method of retrieving stereoscopic medical images from the database that consists of feature extraction, similarity measure, and re-ranking of retrieved images. This method retrieves similar images of the query image from the database and re-ranks them according to the disparity map. The performance is evaluated using the metrics namely average retrieval precision (APR) and average retrieval rate (ARR). According to the performance outcomes, the multi-feature based image retrieval using Mahalanobis distance measure has produced better result compared to other distance measures namely Euclidean, Minkowski, the sum of absolute difference (SAD) and the sum of squared absolute difference (SSAD). Therefore, the stereo image retrieval systems presented has high potential in biomedical image storage and retrieval systems.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Wang Wei ◽  
Tang Can ◽  
Wang Xin ◽  
Luo Yanhong ◽  
Hu Yongle ◽  
...  

An image object recognition approach based on deep features and adaptive weighted joint sparse representation (D-AJSR) is proposed in this paper. D-AJSR is a data-lightweight classification framework, which can classify and recognize objects well with few training samples. In D-AJSR, the convolutional neural network (CNN) is used to extract the deep features of the training samples and test samples. Then, we use the adaptive weighted joint sparse representation to identify the objects, in which the eigenvectors are reconstructed by calculating the contribution weights of each eigenvector. Aiming at the high-dimensional problem of deep features, we use the principal component analysis (PCA) method to reduce the dimensions. Lastly, combined with the joint sparse model, the public features and private features of images are extracted from the training sample feature set so as to construct the joint feature dictionary. Based on the joint feature dictionary, sparse representation-based classifier (SRC) is used to recognize the objects. Experiments on face images and remote sensing images show that D-AJSR is superior to the traditional SRC method and some other advanced methods.


Sign in / Sign up

Export Citation Format

Share Document