scholarly journals A simple multi-feature based stereoscopic medical image retrieval system

2019 ◽  
Vol 25 (2) ◽  
pp. 127-130
Author(s):  
K.A. Shaheer Abubacker ◽  
J. Sutha ◽  
K.A. Shahul Hameed

Abstract This paper describes a method of retrieving stereoscopic medical images from the database that consists of feature extraction, similarity measure, and re-ranking of retrieved images. This method retrieves similar images of the query image from the database and re-ranks them according to the disparity map. The performance is evaluated using the metrics namely average retrieval precision (APR) and average retrieval rate (ARR). According to the performance outcomes, the multi-feature based image retrieval using Mahalanobis distance measure has produced better result compared to other distance measures namely Euclidean, Minkowski, the sum of absolute difference (SAD) and the sum of squared absolute difference (SSAD). Therefore, the stereo image retrieval systems presented has high potential in biomedical image storage and retrieval systems.

Content based image retrieval uses different feature descriptors for image search and retrieval. For image retrieval from huge image repositories, the query image features are extracted and compares these features with the contents of feature repository. The most matching image is found and retrieved from the database. This mapping is done based on the distance calculated between feature vector of query image and the extracted feature vectors of images in the database. There are various distance measures used for comparing image feature vectors. This paper compares a set of distance measures using a set of features used for CBIR. The city-block distance measure gives the best results for CBIR.


The digital image data is quick expanding in capacity and heterogeneity. The customary information retrieval approaches are cannot fulfill the client's need, so there isneed to present a proficient framework for Content Based Image Retrieval(CBIR). The CBIR is an appealing wellspring of precise and quick retrieval. CBIR goes for discovering imagedatabases for explicit images that are like a given query image dependent on its features.In this paper the methodology of content based image retrieval are examined, investigated and thought about. Here, the different image substance, for example, colour, texture and shape features are mined by utilizing differentfeature extraction procedures, and furthermore extraordinary distance measures, Relevance Feedback (RF) and indexing methods are used to improve the execution of the CBIR system.The existing exploration strategies are talked about with their benefits and negative marks, so the further research works can be focused more.


2021 ◽  
Vol 8 (7) ◽  
pp. 97-105
Author(s):  
Ali Ahmed ◽  
◽  
Sara Mohamed ◽  

Content-Based Image Retrieval (CBIR) systems retrieve images from the image repository or database in which they are visually similar to the query image. CBIR plays an important role in various fields such as medical diagnosis, crime prevention, web-based searching, and architecture. CBIR consists mainly of two stages: The first is the extraction of features and the second is the matching of similarities. There are several ways to improve the efficiency and performance of CBIR, such as segmentation, relevance feedback, expansion of queries, and fusion-based methods. The literature has suggested several methods for combining and fusing various image descriptors. In general, fusion strategies are typically divided into two groups, namely early and late fusion strategies. Early fusion is the combination of image features from more than one descriptor into a single vector before the similarity computation, while late fusion refers either to the combination of outputs produced by various retrieval systems or to the combination of different rankings of similarity. In this study, a group of color and texture features is proposed to be used for both methods of fusion strategies. Firstly, an early combination of eighteen color features and twelve texture features are combined into a single vector representation and secondly, the late fusion of three of the most common distance measures are used in the late fusion stage. Our experimental results on two common image datasets show that our proposed method has good performance retrieval results compared to the traditional way of using single features descriptor and also has an acceptable retrieval performance compared to some of the state-of-the-art methods. The overall accuracy of our proposed method is 60.6% and 39.07% for Corel-1K and GHIM-10K ‎datasets, respectively.


Author(s):  
Xiaojun Qi ◽  
Ran Chang

The authors propose a scalable graph-based semi-supervised ranking system for image retrieval. This system exploits the synergism between relevance feedback based transductive short-term learning and semantic feature-based long-term learning to improve retrieval performance. Active learning is applied to build a dynamic feedback log to extract semantic features of images. Two-layer manifold graphs are then built in both low-level visual and high-level semantic spaces. One graph is constructed at the first layer using anchor images obtained from the feedback log. Several graphs are constructed at the second layer using images in their respective cluster formed around each anchor image. An asymmetric relevance vector is created for each second layer graph by propagating initial scores from the first layer. These vectors are fused to propagate relevance scores of labeled images to unlabeled images. The authors’ extensive experiments demonstrate the proposed system outperforms four manifold-based and five state-of-the-art long-term-based image retrieval systems.


Author(s):  
Rakesh Asery ◽  
Ramesh Kumar Sunkaria ◽  
Puneeta Marwaha ◽  
Lakhan Dev Sharma

In this chapter authors introduces content-based image retrieval systems and compares them over a common database. For this, four different content-based local binary descriptors are described with and without Gabor transform in brief. Further Nth derivative descriptor is calculated using (N-1)th derivative, based on rotational and multiscale feature extraction. At last the distance based query image matching is used to find the similarity with database. The performance in terms of average precision, average retrieval rate, different orders of derivatives in the form of average retrieval rate, and length of feature vector v/s performance in terms of time have been calculated. For this work a comparative experiment has been conducted using the Ponce Group images on seven classes (each class have 100 images). In addition, the performance of the all descriptors have been analyzed by combining these with the Gabor transform.


Author(s):  
Ling Shao

In this chapter, we review classical and state of the art Content-Based Image Retrieval algorithms. Techniques on representing and extracting visual features, such as color, shape, and texture, are first presented. Several well-known image retrieval systems using those features are also summarized. Then, two recent trends on image retrieval, namely semantic based methods and local invariant regions based methods, are discussed. We analyze the drawbacks of current approaches and propose directions for future work.


2020 ◽  
Vol 38 (5A) ◽  
pp. 719-727
Author(s):  
Beshaier A. Abdulla ◽  
Yossra H. Ali ◽  
Nuha J. Ibrahim

In the last years, many types of research have introduced different methods and techniques for a correct and reliable image retrieval system. The goal of this paper is a comparison study between two different methods which are the Grey level co-occurrence matrix and the Hu invariants moments, and this study is done by building up an image retrieval system employing each method separately and comparing between the results. The Euclidian distance measure is used to compute the similarity between the query image and database images. Both systems are evaluated according to the measures that are used in detection, description, and matching fields which are precision, recall, and accuracy, and addition to that mean square error (MSE) and structural similarity index (SSIM) is used.  And as it shows from the results the Grey level co-occurrence matrix (GLCM) had outstanding and better results from the Hu invariants moment method.


2014 ◽  
Vol 53 (04) ◽  
pp. 250-256 ◽  
Author(s):  
J. Rühaak ◽  
R. Werner ◽  
H. Handels ◽  
J. Modersitzki ◽  
T. Polzin

SummaryObjectives: Accurate registration of lung CT images is inevitable for numerous clinical applications. Usually, nonlinear intensity-based methods are used. Their accuracy is typically evaluated using corresponding anatomical points (landmarks; e.g. bifurcations of bronchial and vessel trees) annotated by medical experts in the images to register. As image registration can be interpreted as correspond ence finding problem, these corresponding landmarks can also be used in feature-based registration techniques. Recently, approaches for automated identification of such landmark correspondences in lung CT images have been presented. In this work, a novel combination of variational nonlinear intensity-based registration with an approach for automated landmark correspond ence detection in lung CT pairs is presented and evaluated.Methods: The main blocks of the proposed hybrid intensity- and feature-based registration scheme are a two-step landmark correspondence detection and the so-called CoLD (Combining Landmarks and Distance Measures) framework. The landmark correspondence identification starts with feature detection in one image followed by a blockmatching-based transfer of the features to the other image. The established correspond ences are used to compute a thin-plate spline (TPS) transformation. Within CoLD, the TPS transformation is improved by minimization of an objective function consisting of a Normalized Gradient Field distance measure and a curvature regularizer; the landmark correspondences are guaranteed to be preserved by optimization on the kernel of the discretized landmark constraints.Results: Based on ten publicly available end-inspiration/expiration CT scan pairs with anatomical landmark sets annotated by medical experts from the DIR-Lab database, it is shown that the hybrid registration approach is superior in terms of accuracy: The mean distance of expert landmarks is decreased from 8.46 mm before to 1.15 mm after registration, outperforming both the TPS transformation (1.68 mm) and a nonlinear registration without usage of automatically detected landmarks (2.44 mm). The improvement is statistically significant in eight of ten datasets in comparison to TPS and in nine of ten datasets in comparison to the intensity-based registration. Furthermore, CoLD globally estimates the breathing-induced lung volume change well and results in smooth and physiologically plausible motion fields of the lungs.Conclusions: We demonstrated that our novel landmark-based registration pipeline outperforms both TPS and the underlying nonlinear intensity-based registration without landmark usage. This highlights the potential of automatic landmark correspondence detection for improvement of lung CT registration accuracy.


Sign in / Sign up

Export Citation Format

Share Document