Embedded Stochastic Field Exploration with Micro Diving Agents using Bayesian Optimization-Guided Tree-Search and GMRFs

Author(s):  
Daniel A Duecker ◽  
Benedikt Mersch ◽  
Rene C Hochdahl ◽  
Edwin Kreuzer
Author(s):  
Herilalaina Rakotoarison ◽  
Marc Schoenauer ◽  
Michèle Sebag

The AutoML approach aims to deliver peak performance from a machine learning  portfolio on the dataset at hand. A Monte-Carlo Tree Search Algorithm Selection and Configuration (Mosaic) approach is presented to tackle this mixed (combinatorial and continuous) expensive optimization problem on the structured search space of ML pipelines. Extensive lesion studies are conducted to independently assess and compare: i) the optimization processes based on Bayesian Optimization or Monte Carlo Tree Search (MCTS); ii) its warm-start initialization based on meta-features or random runs; iii) the ensembling of the solutions gathered along the search. Mosaic is assessed on the OpenML 100 benchmark and the Scikit-learn portfolio, with statistically significant gains over AutoSkLearn, winner of all former AutoML challenges.


1988 ◽  
Vol 49 (C2) ◽  
pp. C2-259-C2-262 ◽  
Author(s):  
A. DEBARRE ◽  
J.-C. KELLER ◽  
J.-L. LE GOUET ◽  
P. TCHENIO
Keyword(s):  

2020 ◽  
Author(s):  
Jon Uranga ◽  
Lukas Hasecke ◽  
Jonny Proppe ◽  
Jan Fingerhut ◽  
Ricardo A. Mata

The 20S Proteasome is a macromolecule responsible for the chemical step in the ubiquitin-proteasome system of degrading unnecessary and unused proteins of the cell. It plays a central role both in the rapid growth of cancer cells as well as in viral infection cycles. Herein, we present a computational study of the acid-base equilibria in an active site of the human proteasome, an aspect which is often neglected despite the crucial role protons play in the catalysis. As example substrates, we take the inhibition by epoxy and boronic acid containing warheads. We have combined cluster quantum mechanical calculations, replica exchange molecular dynamics and Bayesian optimization of non-bonded potential terms in the inhibitors. In relation to the latter, we propose an easily scalable approach to the reevaluation of non-bonded potentials making use of QM/MM dynamics information. Our results show that coupled acid-base equilibria need to be considered when modeling the inhibition mechanism. The coupling between a neighboring lysine and the reacting threonine is not affected by the presence of the inhibitor.


Sign in / Sign up

Export Citation Format

Share Document