bayesian optimization
Recently Published Documents


TOTAL DOCUMENTS

1388
(FIVE YEARS 1011)

H-INDEX

29
(FIVE YEARS 13)

CATENA ◽  
2022 ◽  
Vol 211 ◽  
pp. 105957
Author(s):  
Seoro Lee ◽  
Joo Hyun Bae ◽  
Jiyeong Hong ◽  
Dongseok Yang ◽  
Panos Panagos ◽  
...  

2022 ◽  
Vol 307 ◽  
pp. 118244
Author(s):  
Benben Jiang ◽  
Marc D. Berliner ◽  
Kun Lai ◽  
Patrick A. Asinger ◽  
Hongbo Zhao ◽  
...  

Author(s):  
J. Hooker ◽  
J. Kovoor ◽  
K.L. Jones ◽  
R. Kanungo ◽  
M. Alcorta ◽  
...  

Author(s):  
Maxim Ziatdinov ◽  
Ayana Ghosh ◽  
Sergei V Kalinin

Abstract Both experimental and computational methods for the exploration of structure, functionality, and properties of materials often necessitate the search across broad parameter spaces to discover optimal experimental conditions and regions of interest in the image space or parameter space of computational models. The direct grid search of the parameter space tends to be extremely time-consuming, leading to the development of strategies balancing exploration of unknown parameter spaces and exploitation towards required performance metrics. However, classical Bayesian optimization strategies based on the Gaussian process (GP) do not readily allow for the incorporation of the known physical behaviors or past knowledge. Here we explore a hybrid optimization/exploration algorithm created by augmenting the standard GP with a structured probabilistic model of the expected system’s behavior. This approach balances the flexibility of the non-parametric GP approach with a rigid structure of physical knowledge encoded into the parametric model. The fully Bayesian treatment of the latter allows additional control over the optimization via the selection of priors for the model parameters. The method is demonstrated for a noisy version of the classical objective function used to evaluate optimization algorithms and further extended to physical lattice models. This methodology is expected to be universally suitable for injecting prior knowledge in the form of physical models and past data in the Bayesian optimization framework.


Sign in / Sign up

Export Citation Format

Share Document