scholarly journals Probabilistic Inference in Planning for Partially Observable Long Horizon Problems

Author(s):  
Alphonsus Adu-Bredu ◽  
Nikhil Devraj ◽  
Pin-Han Lin ◽  
Zhen Zeng ◽  
Odest Chadwicke Jenkins
2019 ◽  
Vol 65 ◽  
pp. 307-341 ◽  
Author(s):  
Erwin Walraven ◽  
Matthijs T. J. Spaan

Partially Observable Markov Decision Processes (POMDPs) are a popular formalism for sequential decision making in partially observable environments. Since solving POMDPs to optimality is a difficult task, point-based value iteration methods are widely used. These methods compute an approximate POMDP solution, and in some cases they even provide guarantees on the solution quality, but these algorithms have been designed for problems with an infinite planning horizon. In this paper we discuss why state-of-the-art point-based algorithms cannot be easily applied to finite-horizon problems that do not include discounting. Subsequently, we present a general point-based value iteration algorithm for finite-horizon problems which provides solutions with guarantees on solution quality. Furthermore, we introduce two heuristics to reduce the number of belief points considered during execution, which lowers the computational requirements. In experiments we demonstrate that the algorithm is an effective method for solving finite-horizon POMDPs.


1976 ◽  
Author(s):  
Berndt Brehmer ◽  
Jan Kuylenstierna ◽  
Jan-Erik Liljergren

1991 ◽  
Author(s):  
Edward H. Shortliffe ◽  
Gregory F. Cooper

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Amini ◽  
Felipe Restrepo Franco ◽  
Guiping Hu ◽  
Lizhi Wang

AbstractRecent advances in genomic selection (GS) have demonstrated the importance of not only the accuracy of genomic prediction but also the intelligence of selection strategies. The look ahead selection algorithm, for example, has been found to significantly outperform the widely used truncation selection approach in terms of genetic gain, thanks to its strategy of selecting breeding parents that may not necessarily be elite themselves but have the best chance of producing elite progeny in the future. This paper presents the look ahead trace back algorithm as a new variant of the look ahead approach, which introduces several improvements to further accelerate genetic gain especially under imperfect genomic prediction. Perhaps an even more significant contribution of this paper is the design of opaque simulators for evaluating the performance of GS algorithms. These simulators are partially observable, explicitly capture both additive and non-additive genetic effects, and simulate uncertain recombination events more realistically. In contrast, most existing GS simulation settings are transparent, either explicitly or implicitly allowing the GS algorithm to exploit certain critical information that may not be possible in actual breeding programs. Comprehensive computational experiments were carried out using a maize data set to compare a variety of GS algorithms under four simulators with different levels of opacity. These results reveal how differently a same GS algorithm would interact with different simulators, suggesting the need for continued research in the design of more realistic simulators. As long as GS algorithms continue to be trained in silico rather than in planta, the best way to avoid disappointing discrepancy between their simulated and actual performances may be to make the simulator as akin to the complex and opaque nature as possible.


Author(s):  
Bhaskar Ramasubramanian ◽  
Luyao Niu ◽  
Andrew Clark ◽  
Linda Bushnell ◽  
Radha Poovendran

Sign in / Sign up

Export Citation Format

Share Document