genomic selection
Recently Published Documents


TOTAL DOCUMENTS

1165
(FIVE YEARS 497)

H-INDEX

79
(FIVE YEARS 12)

2022 ◽  
Vol 8 ◽  
Author(s):  
Michela Ablondi ◽  
Alberto Sabbioni ◽  
Giorgia Stocco ◽  
Claudio Cipolat-Gotet ◽  
Christos Dadousis ◽  
...  

Genetic diversity has become an urgent matter not only in small local breeds but also in more specialized ones. While the use of genomic data in livestock breeding programs increased genetic gain, there is increasing evidence that this benefit may be counterbalanced by the potential loss of genetic variability. Thus, in this study, we aimed to investigate the genetic diversity in the Italian Holstein dairy cattle using pedigree and genomic data from cows born between 2002 and 2020. We estimated variation in inbreeding, effective population size, and generation interval and compared those aspects prior to and after the introduction of genomic selection in the breed. The dataset contained 84,443 single-nucleotide polymorphisms (SNPs), and 74,485 cows were analyzed. Pedigree depth based on complete generation equivalent was equal to 10.67. A run of homozygosity (ROH) analysis was adopted to estimate SNP-based inbreeding (FROH). The average pedigree inbreeding was 0.07, while the average FROH was more than double, being equal to 0.17. The pattern of the effective population size based on pedigree and SNP data was similar although different in scale, with a constant decrease within the last five generations. The overall inbreeding rate (ΔF) per year was equal to +0.27% and +0.44% for Fped and FROH throughout the studied period, which corresponded to about +1.35% and +2.2% per generation, respectively. A significant increase in the ΔF was found since the introduction of genomic selection in the breed. This study in the Italian Holstein dairy cattle showed the importance of controlling the loss of genetic diversity to ensure the long-term sustainability of this breed, as well as to guarantee future market demands.


2022 ◽  
Author(s):  
Irene S. Breider ◽  
R. Chris Gaynor ◽  
Gregor Gorjanc ◽  
Steve Thorn ◽  
Manish K. Pandey ◽  
...  

Abstract Some of the most economically important traits in plant breeding show highly polygenic inheritance. Genetic variation is a key determinant of the rates of genetic improvement in selective breeding programs. Rapid progress in genetic improvement comes at the cost of a rapid loss of genetic variation. Germplasm available through expired Plant Variety Protection (exPVP) lines is a potential resource of variation previously lost in elite breeding programs. Introgression for polygenic traits is challenging, as many genes have a small effect on the trait of interest. Here we propose a way to overcome these challenges with a multi-part pre-breeding program that has feedback pathways to optimise recurrent genomic selection. The multi-part breeding program consists of three components, namely a bridging component, population improvement, and product development. Parameters influencing the multi-part program were optimised with the use of a grid search. Haploblock effect and origin were investigated. Results showed that the introgression of exPVP germplasm using an optimised multi-part breeding strategy resulted in 1.53 times higher genetic gain compared to a two-part breeding program. Higher gain was achieved through reducing the performance gap between exPVP and elite germplasm and breaking down linkage drag. Both first and subsequent introgression events showed to be successful. In conclusion, the multi-part breeding strategy has a potential to improve long-term genetic gain for polygenic traits and therefore, potential to contribute to global food security.


2022 ◽  
Vol 12 ◽  
Author(s):  
David Bonnett ◽  
Yongle Li ◽  
Jose Crossa ◽  
Susanne Dreisigacker ◽  
Bhoja Basnet ◽  
...  

We investigated increasing genetic gain for grain yield using early generation genomic selection (GS). A training set of 1,334 elite wheat breeding lines tested over three field seasons was used to generate Genomic Estimated Breeding Values (GEBVs) for grain yield under irrigated conditions applying markers and three different prediction methods: (1) Genomic Best Linear Unbiased Predictor (GBLUP), (2) GBLUP with the imputation of missing genotypic data by Ridge Regression BLUP (rrGBLUP_imp), and (3) Reproducing Kernel Hilbert Space (RKHS) a.k.a. Gaussian Kernel (GK). F2 GEBVs were generated for 1,924 individuals from 38 biparental cross populations between 21 parents selected from the training set. Results showed that F2 GEBVs from the different methods were not correlated. Experiment 1 consisted of selecting F2s with the highest average GEBVs and advancing them to form genomically selected bulks and make intercross populations aiming to combine favorable alleles for yield. F4:6 lines were derived from genomically selected bulks, intercrosses, and conventional breeding methods with similar numbers from each. Results of field-testing for Experiment 1 did not find any difference in yield with genomic compared to conventional selection. Experiment 2 compared the predictive ability of the different GEBV calculation methods in F2 using a set of single plant-derived F2:4 lines from randomly selected F2 plants. Grain yield results from Experiment 2 showed a significant positive correlation between observed yields of F2:4 lines and predicted yield GEBVs of F2 single plants from GK (the predictive ability of 0.248, P < 0.001) and GBLUP (0.195, P < 0.01) but no correlation with rrGBLUP_imp. Results demonstrate the potential for the application of GS in early generations of wheat breeding and the importance of using the appropriate statistical model for GEBV calculation, which may not be the same as the best model for inbreds.


2022 ◽  
Vol 12 ◽  
Author(s):  
Philomin Juliana ◽  
Xinyao He ◽  
Felix Marza ◽  
Rabiul Islam ◽  
Babul Anwar ◽  
...  

Wheat blast is an emerging threat to wheat production, due to its recent migration to South Asia and Sub-Saharan Africa. Because genomic selection (GS) has emerged as a promising breeding strategy, the key objective of this study was to evaluate it for wheat blast phenotyped at precision phenotyping platforms in Quirusillas (Bolivia), Okinawa (Bolivia) and Jashore (Bangladesh) using three panels: (i) a diversity panel comprising 172 diverse spring wheat genotypes, (ii) a breeding panel comprising 248 elite breeding lines, and (iii) a full-sibs panel comprising 298 full-sibs. We evaluated two genomic prediction models (the genomic best linear unbiased prediction or GBLUP model and the Bayes B model) and compared the genomic prediction accuracies with accuracies from a fixed effects model (with selected blast-associated markers as fixed effects), a GBLUP + fixed effects model and a pedigree relationships-based model (ABLUP). On average, across all the panels and environments analyzed, the GBLUP + fixed effects model (0.63 ± 0.13) and the fixed effects model (0.62 ± 0.13) gave the highest prediction accuracies, followed by the Bayes B (0.59 ± 0.11), GBLUP (0.55 ± 0.1), and ABLUP (0.48 ± 0.06) models. The high prediction accuracies from the fixed effects model resulted from the markers tagging the 2NS translocation that had a large effect on blast in all the panels. This implies that in environments where the 2NS translocation-based blast resistance is effective, genotyping one to few markers tagging the translocation is sufficient to predict the blast response and genome-wide markers may not be needed. We also observed that marker-assisted selection (MAS) based on a few blast-associated markers outperformed GS as it selected the highest mean percentage (88.5%) of lines also selected by phenotypic selection and discarded the highest mean percentage of lines (91.8%) also discarded by phenotypic selection, across all panels. In conclusion, while this study demonstrates that MAS might be a powerful strategy to select for the 2NS translocation-based blast resistance, we emphasize that further efforts to use genomic tools to identify non-2NS translocation-based blast resistance are critical.


Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Menghua Zhang ◽  
Hanpeng Luo ◽  
Lei Xu ◽  
Yuangang Shi ◽  
Jinghang Zhou ◽  
...  

One-step genomic selection is a method for improving the reliability of the breeding value estimation. This study aimed to compare the reliability of pedigree-based best linear unbiased prediction (PBLUP) and single-step genomic best linear unbiased prediction (ssGBLUP), single-trait and multitrait models, and the restricted maximum likelihood (REML) and Bayesian methods. Data were collected from the production performance records of 2207 Xinjiang Brown cattle in Xinjiang from 1983 to 2018. A cross test was designed to calculate the genetic parameters and reliability of the breeding value of 305 daily milk yield (305 dMY), milk fat yield (MFY), milk protein yield (MPY), and somatic cell score (SCS) of Xinjiang Brown cattle. The heritability of 305 dMY, MFY, MPY, and SCS estimated using the REML and Bayesian multitrait models was approximately 0.39 (0.02), 0.40 (0.03), 0.49 (0.02), and 0.07 (0.02), respectively. The heritability and estimated breeding value (EBV) and the reliability of milk production traits of these cattle calculated based on PBLUP and ssGBLUP using the multitrait model REML and Bayesian methods were higher than those of the single-trait model REML method; the ssGBLUP method was significantly better than the PBLUP method. The reliability of the estimated breeding value can be improved from 0.9% to 3.6%, and the reliability of the genomic estimated breeding value (GEBV) for the genotyped population can reach 83%. Therefore, the genetic evaluation of the multitrait model is better than that of the single-trait model. Thus, genomic selection can be applied to small population varieties such as Xinjiang Brown cattle, in improving the reliability of the genomic estimated breeding value.


2022 ◽  
Author(s):  
Jian Cheng ◽  
Francesco Tiezzi ◽  
Jeremy Howard ◽  
Christian Maltecca ◽  
Jicai Jiang

Abstract Background: Genomic selection has been implemented in livestock genetic evaluations for years. However, currently most genomic selection models only consider the additive effects associated with SNP markers and nonadditive genetic effects have been for the most part ignored. Methods: Production traits for 26,735 to 27,647 Duroc pigs and reproductive traits for 5,338 sows were used, including off-test body weight (WT), off-test back fat (BF), off-test loin muscle depth (MS), number born alive (NBA), number born dead (NBD), and number weaned (NW). All animals were genotyped with the PorcineSNP60K Bead Chip. Variance components were estimated using a linear mixed model that includes inbreeding coefficient, additive, dominance, additive-by-additive, additive-by-dominance, dominance-by-dominance effect, and common litter environmental effect. Genomic prediction performance, including all nonadditive genetic effects, was compared with a reduced model that included only additive genetic effect. Results: Significant estimates of additive-by-additive effect variance were observed for NBA, BF, and WT (31%, 9%, and 10%, respectively). Production traits showed significant large estimates of additive-by-dominance variance (9%-23%). MS also showed large estimate of dominance-by-dominance variance (10%). Dominance effect variance estimates were low for all traits (0%-2%). Compared to the reduced model, prediction accuracies using the full model, including nonadditive effects, increased significantly by 12%, 12%, and 1% for NBA, WT, and MS, respectively. A strong dominance association signal with BF was identified near AK5.Conclusions: Sizable estimates of epistatic effects were found for the reproduction and production traits, while the dominance effect was relatively small for all traits yet significant for all production traits. Including nonadditive effects, especially epistatic effects in the genomic prediction model, significantly improved prediction accuracy for NBA, WT, and MS.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Dachang Dou ◽  
Linyong Shen ◽  
Jiamei Zhou ◽  
Zhiping Cao ◽  
Peng Luan ◽  
...  

Abstract Background The identification of markers and genes for growth traits may not only benefit for marker assist selection /genomic selection but also provide important information for understanding the genetic foundation of growth traits in broilers. Results In the current study, we estimated the genetic parameters of eight growth traits in broilers and carried out the genome-wide association studies for these growth traits. A total of 113 QTNs discovered by multiple methods together, and some genes, including ACTA1, IGF2BP1, TAPT1, LDB2, PRKCA, TGFBR2, GLI3, SLC16A7, INHBA, BAMBI, APCDD1, GPR39, and GATA4, were identified as important candidate genes for rapid growth in broilers. Conclusions The results of this study will provide important information for understanding the genetic foundation of growth traits in broilers.


Author(s):  
Osval Antonio Montesinos López ◽  
Abelardo Montesinos López ◽  
Jose Crossa

AbstractWe give a detailed description of random forest and exemplify its use with data from plant breeding and genomic selection. The motivations for using random forest in genomic-enabled prediction are explained. Then we describe the process of building decision trees, which are a key component for building random forest models. We give (1) the random forest algorithm, (2) the main hyperparameters that need to be tuned, and (3) different splitting rules that are key for implementing random forest models for continuous, binary, categorical, and count response variables. In addition, many examples are provided for training random forest models with different types of response variables with plant breeding data. The random forest algorithm for multivariate outcomes is provided and its most popular splitting rules are also explained. In this case, some examples are provided for illustrating its implementation even with mixed outcomes (continuous, binary, and categorical). Final comments about the pros and cons of random forest are provided.


2022 ◽  
Vol 79 (6) ◽  
Author(s):  
Taiana Lopes Rangel Miranda ◽  
Marcos Deon Vilela de Resende ◽  
Camila Ferreira Azevedo ◽  
Andrei Caíque Pires Nunes ◽  
Elizabete Keiko Takahashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document