Enhancement of voltage stability index of distribution system by network reconfiguration including static load model and daily load curve

Author(s):  
Khyati. Mistry ◽  
Ranjit. Roy
2018 ◽  
Vol 7 (3) ◽  
pp. 442-449
Author(s):  
Mohd Nurulhady Morshidi ◽  
Ismail Musirin ◽  
Siti Rafidah Abdul Rahim ◽  
Mohd Rafi Adzman ◽  
Mohamad Hatta Hussain

This paper presents Whale Optimization Algorithm (WOA) Based Technique for Distributed Generation Installation in Transmission System. In this study, WOA optimization engine is developed for the installation of Distributed Generation (DG). Prior to the optimization process, a pre-developed voltage stability index termed Fast Voltage Stability Index (FVSI) was used as an indicator to identify the location for the DG to be installed in the system. Meanwhile, for sizing the DG WOA is employed to identify the optimal sizing. By installing DG in the transmission system, voltage stability and voltage profile can be improved, while power losses can be minimized. The proposed algorithm was tested on 30-bus radial distribution network. Results obtained from the EP were compared with firefly algorithm (FA); indicating better results. This highlights the strength of WOA over FA in terms of minimizing total losses.


Author(s):  
Muniru Olajide Okelola ◽  
Sunday Adeleke Salimon ◽  
Oluwole Abiodun Adegbola ◽  
Emmanuel Idowu Ogunwole ◽  
Samson Oladayo Ayanlade ◽  
...  

2012 ◽  
Vol 61 (2) ◽  
pp. 239-250 ◽  
Author(s):  
M. Kumar ◽  
P. Renuga

Application of UPFC for enhancement of voltage profile and minimization of losses using Fast Voltage Stability Index (FVSI)Transmission line loss minimization in a power system is an important research issue and it can be achieved by means of reactive power compensation. The unscheduled increment of load in a power system has driven the system to experience stressed conditions. This phenomenon has also led to voltage profile depreciation below the acceptable secure limit. The significance and use of Flexible AC Transmission System (FACTS) devices and capacitor placement is in order to alleviate the voltage profile decay problem. The optimal value of compensating devices requires proper optimization technique, able to search the optimal solution with less computational burden. This paper presents a technique to provide simultaneous or individual controls of basic system parameter like transmission voltage, impedance and phase angle, thereby controlling the transmitted power using Unified Power Flow Controller (UPFC) based on Bacterial Foraging (BF) algorithm. Voltage stability level of the system is defined on the Fast Voltage Stability Index (FVSI) of the lines. The IEEE 14-bus system is used as the test system to demonstrate the applicability and efficiency of the proposed system. The test result showed that the location of UPFC improves the voltage profile and also minimize the real power loss.


Sign in / Sign up

Export Citation Format

Share Document