Archives of Electrical Engineering
Latest Publications


TOTAL DOCUMENTS

381
(FIVE YEARS 0)

H-INDEX

12
(FIVE YEARS 0)

Published By De Gruyter Open Sp. Z O.O.

2300-2506, 0004-0746

2017 ◽  
Vol 66 (4) ◽  
pp. 717-730 ◽  
Author(s):  
Amir Abbaszadeh ◽  
Mehrdad Abedi ◽  
Ali Doustmohammadi

Abstract Arresters are widely used in power systems to protect other equipment against overvoltages. However, in some conditions, they can’t operate successfully. One of the disturbances leading to the failure of the riser pole arresters is the ferroresonance overvoltages. In this paper, at first the influence of different transformer simulation models of ATP software on the occurrence of ferroresonance is studied and then the effect of ferroresonance on the riser pole arrester has been scrutinized through the thermal and electrical performance of the arrester in an underground distribution system. The results show that the arrester temperature rises due to energy dissipation in a ferroresonance circumstance, which indeed may result into the explosion of the arrester. Also, applying different models of the transformer in the ATP software and comparing the results, it is shown that the available models do not show the same effect on the arrester.


2017 ◽  
Vol 66 (4) ◽  
pp. 815-828
Author(s):  
Chukwuemeka Chijioke Awah ◽  
Ogbonnaya Inya Okoro

Abstract The torque profile of a double-stator permanent magnet (PM) synchronous machine of 90 mm stator diameter having different rotor pole numbers as well as dual excitation is investigated in this paper. The analysis includes a comparative study of the machine’s torque and power-speed curves, static torque and inductance characteristics, losses and unbalanced magnetic force. The most promising flux-weakening potential is revealed in 13- and 7-rotor pole machines. Moreover, the machines having different rotor/stator (Nr/Ns) pole combinations of the form Nr = Ns ± 1 have balanced and symmetric static torque waveforms variation with the rotor position in contrast to the machines having Nr = Ns ± 2. Further, the inductance results of the analyzed machines reveal that the machines with odd rotor pole numbers have better fault-tolerant capability than their even rotor pole equivalents. A prototype of the developed double-stator machine having a 13-pole rotor is manufactured and tested for verification.


2017 ◽  
Vol 66 (4) ◽  
pp. 731-743
Author(s):  
Hanuman Prasad ◽  
Tanmoy Maity

Abstract This paper presents the small signal modeling using the state space averaging technique and reliability analysis of a three-phase z-source ac-ac converter. By controlling the shoot-through duty ratio, it can operate in buck-boost mode and maintain desired output voltage during voltage sag and surge condition. It has faster dynamic response and higher efficiency as compared to the traditional voltage regulator. Small signal analysis derives different control transfer functions and this leads to design a suitable controller for a closed loop system during supply voltage variation. The closed loop system of the converter with a PID controller eliminates the transients in output voltage and provides steady state regulated output. The proposed model designed in the RT-LAB and executed in a field programming gate array (FPGA)-based real-time digital simulator at a fixedtime step of 10 μs and a constant switching frequency of 10 kHz. The simulator was developed using very high speed integrated circuit hardware description language (VHDL), making it versatile and moveable. Hardware-in-the-loop (HIL) simulation results are presented to justify the MATLAB simulation results during supply voltage variation of the three phase z-source ac-ac converter. The reliability analysis has been applied to the converter to find out the failure rate of its different components.


2017 ◽  
Vol 66 (4) ◽  
pp. 829-842
Author(s):  
Leszek Jarzebowicz ◽  
Artur Opalinski

Abstract In-wheel electric drives are promising as actuators in active safety systems of electric and hybrid vehicles. This new function requires dedicated control algorithms, making it essential to deliver models that reflect better the wheel-torque control dynamics of electric drives. The timing of digital control events, whose importance is stressed in current research, still lacks an analytical description allowing for modeling its influence on control system dynamics. In this paper, authors investigate and compare approaches to the analog and discrete analytical modeling of torque control loop in digitally controlled electric drive. Five different analytical models of stator current torque component control are compared to judge their accuracy in representing drive control dynamics related to the timing of digital control events. The Bode characteristics and stepresponse characteristics of the analytical models are then compared with those of a reference model for three commonly used cases of motor discrete control schemes. Finally, the applicability of the presented models is discussed.


2017 ◽  
Vol 66 (4) ◽  
pp. 693-704 ◽  
Author(s):  
Talar Sadalla ◽  
Dariusz Horla ◽  
Wojciech Giernacki ◽  
Piotr Kozierski

Abstract The paper aims at presenting the influence of an open-loop time delay on the stability and tracking performance of a second-order open-loop system and continuoustime fractional-order PI controller. The tuning method of this controller is based on Hermite- Biehler and Pontryagin theorems, and the tracking performance is evaluated on the basis of two integral performance indices, namely IAE and ISE. The paper extends the results and methodology presented in previous work of the authors to analysis of the influence of time delay on the closed-loop system taking its destabilizing properties into account, as well as concerning possible application of the presented results and used models.


2017 ◽  
Vol 66 (4) ◽  
pp. 751-760
Author(s):  
Milena Kurzawa ◽  
Dorota Stachowiak

Abstract The paper presents the design procedure and elaborated software for designing calculation of the shape memory alloy (SMA) actuator. The thermo-mechanical behavior of a linear SMA actuator has been studied. The experimental set-up was especially designed to perform the thermo-mechanical characterization of SMA wires. The stroke (s) - temperature (T) hysteresis characteristics have been determined. The cycle of heating and cooling has been performed under a constant load. The model for the SMA actuator s - T behavior has been proposed and successfully implemented. The selected results and conclusions have been presented. The concept proposal of the linear actuator using the SMA wire has been given.


2017 ◽  
Vol 66 (4) ◽  
pp. 745-750 ◽  
Author(s):  
Jakub Szałatkiewicz ◽  
Roman Szewczyk ◽  
Mateusz Kalinowski ◽  
Juhani Kataja ◽  
Peter Råback ◽  
...  

Abstract Microwave devices are widely used in the industry and in the specialized laboratory analyses. Development of such devices requires the possibility of modeling of microwave energy distribution in the specific resonant chambers. Until now, such modeling was possible only with the use of commercial software or was limited to specific cases. The paper presents an open-source module for ELMER software for solving timeharmonic Maxwell’s equations, allowing modeling of microwave waveguide lines. Three test cases of different resonant chambers are investigated at 2.45 GHz frequency. Modeling results obtained from the open-source ELMER Vectorial Helmholtz module show that the application of this software can be effective in R&D works, enabling high-tech small and medium enterprises involvement in advanced microwave technology.


2017 ◽  
Vol 66 (4) ◽  
pp. 787-799 ◽  
Author(s):  
Jafar Nosratian Ahour ◽  
Saeed Seyedtabaii ◽  
Gevork B. Gharehpetian

Abstract Researchers have used various methods to determine the parameters of transformer- equivalent circuits in transient studies. But most of these previous algorithms had difficulty finding the equivalent circuit parameters in a bigger model. This paper presents a new method to extract the inductance matrix of a detailed model for an air core winding for transient studies using frequency-response measurement data. This matrix can be determined with acceptable accuracy by using the proposed method. The biggest advantage of the proposed method is a reduction in the search space, and thus, speedier problemsolving. Simulations showed that the use of the proposed method leads to better behavioural quality of a transformer winding. The simulation results of the previous and proposed methods were compared with the help of a 20/0.4 kV, 1600 kVA transformer. This comparison showed the accuracy and superiority of the proposed method.


2017 ◽  
Vol 66 (4) ◽  
pp. 705-715 ◽  
Author(s):  
Łukasz Tomków ◽  
Stanisław Trojanowski ◽  
Marian Ciszek ◽  
Maciej Chorowski

Abstract Superconducting magnets in the SIS100 particle accelerator require the supply of liquid helium and electric current. Both are transported with by-pass lines designed at Wrocław University of Technology. Bus-bars used to transfer an electric current between the sections of the accelerator will be encased in a steel shell. Eddy currents are expected to appear in the shell during fast-ramp operation of magnets. Heat generation, which should be limited in any cryogenic system, will appear in the shell. In this work the amount of heat generated is assessed depending on the geometry of an assembly of the bus-bars and the shell. Numerical and analytical calculations are described. It was found that heat generation in the shell is relatively small when compared to other sources present in the accelerator and its value strongly depends on the geometry of the shell. The distribution of eddy currents and generated heat for different geometrical options are presented. Based on the results of the calculations the optimal design is proposed.


2017 ◽  
Vol 66 (4) ◽  
pp. 663-679 ◽  
Author(s):  
Tadeusz Kaczorek

Abstract The specific duality and asymptotic stability of the positive linear electrical circuits are addressed. The specific duality of positive linear electrical circuits composed of resistances, inductances, capacitances and source voltages is established. 1) The linear electrical circuits are positive if and only if the common branches between meshes with resistances and inductances and meshes with resistances and capacitances contain only source voltages; 2) In linear electrical circuits the interchanges of the inductances by the capacitances and the capacitances by inductances do not change the asymptotic stability of the electrical circuits. The asymptotic stability of the positive and nonpositive electrical circuits is analyzed.


Sign in / Sign up

Export Citation Format

Share Document