A new polar coding scheme for strong security on wiretap channels

Author(s):  
Eren Sasoglu ◽  
Alexander Vardy
2019 ◽  
Vol 13 (4) ◽  
pp. 393-403
Author(s):  
Yizhi Zhao ◽  
Shiwei Xu ◽  
Hongmei Chi

Algorithms ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 218 ◽  
Author(s):  
Marco Mondelli ◽  
S. Hamed Hassani ◽  
Rüdiger Urbanke

We consider the primitive relay channel, where the source sends a message to the relay and to the destination, and the relay helps the communication by transmitting an additional message to the destination via a separate channel. Two well-known coding techniques have been introduced for this setting: decode-and-forward and compress-and-forward. In decode-and-forward, the relay completely decodes the message and sends some information to the destination; in compress-and-forward, the relay does not decode, and it sends a compressed version of the received signal to the destination using Wyner–Ziv coding. In this paper, we present a novel coding paradigm that provides an improved achievable rate for the primitive relay channel. The idea is to combine compress-and-forward and decode-and-forward via a chaining construction. We transmit over pairs of blocks: in the first block, we use compress-and-forward; and, in the second block, we use decode-and-forward. More specifically, in the first block, the relay does not decode, it compresses the received signal via Wyner–Ziv, and it sends only part of the compression to the destination. In the second block, the relay completely decodes the message, it sends some information to the destination, and it also sends the remaining part of the compression coming from the first block. By doing so, we are able to strictly outperform both compress-and-forward and decode-and-forward. Note that the proposed coding scheme can be implemented with polar codes. As such, it has the typical attractive properties of polar coding schemes, namely, quasi-linear encoding and decoding complexity, and error probability that decays at super-polynomial speed. As a running example, we take into account the special case of the erasure relay channel, and we provide a comparison between the rates achievable by our proposed scheme and the existing upper and lower bounds.


Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 149
Author(s):  
Jaume del Olmo Alòs ◽  
Javier Rodríguez Fonollosa

A polar coding scheme is proposed for the Wiretap Broadcast Channel with two legitimate receivers and one eavesdropper. We consider a model in which the transmitter wishes to send the same private (non-confidential) message and the same confidential message reliably to two different legitimate receivers, and the confidential message must also be (strongly) secured from the eavesdropper. The coding scheme aims to use the optimal rate of randomness and does not make any assumption regarding the symmetry or degradedness of the channel. This paper extends previous work on polar codes for the wiretap channel by proposing a new chaining construction that allows to reliably and securely send the same confidential message to two different receivers. This construction introduces new dependencies between the random variables involved in the coding scheme that need to be considered in the secrecy analysis.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 191472-191481
Author(s):  
Rabiu Sale Zakariyya ◽  
Khalid Hossen Jewel ◽  
Akinwale O. Fadamiro ◽  
Oluwole John Famoriji ◽  
Fujiang Lin

Sign in / Sign up

Export Citation Format

Share Document