On the Needs and Challenges of Model-Based Engineering for Spaceflight Software Systems

Author(s):  
Robert G. Pettit ◽  
Navneet Mezcciani ◽  
Julie Fant
Keyword(s):  
Author(s):  
Ayda Saidane ◽  
Nicolas Guelfi

The quality of software systems depends strongly on their architecture. For this reason, taking into account non-functional requirements at architecture level is crucial for the success of the software development process. Early architecture model validation facilitates the detection and correction of design errors. In this research, the authors are interested in security critical systems, which require a reliable validation process. So far, they are missing security-testing approaches providing an appropriate compromise between software quality and development cost while satisfying certification and audit procedures requirements through automated and documented validation activities. In this chapter, the authors propose a novel test-driven and architecture model-based security engineering approach for resilient systems. It consists of a test-driven security modeling framework and a test based validation approach. The assessment of the security requirement satisfaction is based on the test traces analysis. Throughout this study, the authors illustrate the approach using a client server architecture case study.


2014 ◽  
pp. 2072-2098
Author(s):  
Ayda Saidane ◽  
Nicolas Guelfi

The quality of software systems depends strongly on their architecture. For this reason, taking into account non-functional requirements at architecture level is crucial for the success of the software development process. Early architecture model validation facilitates the detection and correction of design errors. In this research, the authors are interested in security critical systems, which require a reliable validation process. So far, they are missing security-testing approaches providing an appropriate compromise between software quality and development cost while satisfying certification and audit procedures requirements through automated and documented validation activities. In this chapter, the authors propose a novel test-driven and architecture model-based security engineering approach for resilient systems. It consists of a test-driven security modeling framework and a test based validation approach. The assessment of the security requirement satisfaction is based on the test traces analysis. Throughout this study, the authors illustrate the approach using a client server architecture case study.


2012 ◽  
Vol 3 (3) ◽  
pp. 1-22 ◽  
Author(s):  
Shareeful Islam ◽  
Haralambos Mouratidis ◽  
Christos Kalloniatis ◽  
Aleksandar Hudic ◽  
Lorenz Zechner

Software systems are becoming more complex, interconnected and liable to adopt continuous change and evolution. It’s necessary to develop appropriate methods and techniques to ensure security and privacy of such systems. Research efforts that aim to ensure security and privacy of software systems are distinguished through two main categories: (1) the development of requirements engineering methods, and (2) implementation techniques. Approaches that fall in the first category usually aim to address either security or privacy in an implicit way, with emphasis on the security aspects by developing methods to elicit and analyse security (and privacy) requirements. Works that fall in the latter categories focus specifically on the later stages of the development process irrespective of the organisational context in which the system will be incorporated. This work introduces a model-based process for security and privacy requirements engineering. In particular, the authors’ work includes activities which support to identify and analyse security and privacy requirements for the software system. Their purpose process combines concepts from two well-known requirements engineering methods, Secure Tropos and PriS. A real case study from the EU project E-vote, i.e., an Internet based voting system, is employed to demonstrate the applicability of the approach.


Author(s):  
Detlef Streitferdt ◽  
Florian Kantz ◽  
Philipp Nenninger ◽  
Thomas Ruschival ◽  
Holger Kaul ◽  
...  

This article reports the results of an industrial case study demonstrating the efficacy of a model-based testing process in assuring the quality of highly configurable systems from the automation domain. Escalating demand for flexibility has made modern embedded software systems highly configurable. This configurability is often realized through parameters and a highly configurable system possesses a handful of those. Small changes in parameter values can account for significant changes in the system’s behavior, whereas in other cases, changed parameters may not result in any perceivable reaction. This case study addresses the challenge of applying model-based testing to configurable embedded software systems to reduce development effort. As a result of the case study, a model-based testing process was developed and tailored toward the needs of the automation domain. This process integrates existing model-based testing methods and tools, such as combinatorial design and constraint processing. The testing process was applied as part of the case study and analyzed in terms of its actual saving potentials, which reduced the testing effort by more than a third.


Sign in / Sign up

Export Citation Format

Share Document