2014 ◽  
Vol 48 (1) ◽  
pp. 90-97 ◽  
Author(s):  
Brian L. Wiens ◽  
Theodore C. Lystig ◽  
Scott M. Berry

2013 ◽  
Vol 16 ◽  
pp. 581-590 ◽  
Author(s):  
Jeroen G. Ruiter ◽  
Mascha C. van der Voort ◽  
G. Maarten Bonnema

2017 ◽  
Vol 113 (5/6) ◽  
Author(s):  
Kylie de Jager ◽  
Chipo Chimhundu ◽  
Trust Saidi ◽  
Tania S. Douglas ◽  
◽  
...  

A characterisation of the medical device development landscape in South Africa would be beneficial for future policy developments that encourage locally developed devices to address local healthcare needs. The landscape was explored through a bibliometric analysis (2000–2013) of relevant scientific papers using co-authorship as an indicator of collaboration. Collaborating institutions thus found were divided into four sectors: academia (A); healthcare (H); industry (I); and science and support (S). A collaboration network was drawn to show the links between the institutions and analysed using network analysis metrics. Centrality measures identified seven dominant local institutions from three sectors. Group densities were used to quantify the extent of collaboration: the A sector collaborated the most extensively both within and between sectors; local collaborations were more prevalent than international collaborations. Translational collaborations (AHI, HIS or AHIS) are considered to be pivotal in fostering medical device innovation that is both relevant and likely to be commercialised. Few such collaborations were found, suggesting room for increased collaboration of these types in South Africa.


Author(s):  
Lisa Henn

Early stage medical device development teams investigate many alternatives before selecting a final design proposal. The team must be able to retrace and reproduce successful designs and understand factors that underpin decisions that came before. This is especially important in a university setting due to the natural turnover on the team that is inherent in a successful research group. Effective design control provides this support to the design team.


2013 ◽  
Vol 7 (2) ◽  
Author(s):  
Christopher Sweem ◽  
Stan Crossett ◽  
Lori Lucke

In this paper a method is presented for using value stream mapping for improving the development process of medical devices. Two examples are shown to demonstrate the utility of this approach.


Sign in / Sign up

Export Citation Format

Share Document