Common neural mechanism for reaching movements

Author(s):  
Hong Gi Yeom ◽  
June Sic Kim ◽  
Chun Kee Chung
2013 ◽  
Vol 110 (3) ◽  
pp. 768-783 ◽  
Author(s):  
Anil Cherian ◽  
Hugo L. Fernandes ◽  
Lee E. Miller

We often make reaching movements having similar trajectories within very different mechanical environments, for example, with and without an added load in the hand. Under these varying conditions, our kinematic intentions must be transformed into muscle commands that move the limbs. Primary motor cortex (M1) has been implicated in the neural mechanism that mediates this adaptation to new movement dynamics, but our recent experiments suggest otherwise. We have recorded from electrode arrays that were chronically implanted in M1 as monkeys made reaching movements under two different dynamic conditions: the movements were opposed by either a clockwise or counterclockwise velocity-dependent force field acting at the hand. Under these conditions, the preferred direction (PD) of neural discharge for nearly all neurons rotated in the direction of the applied field, as did those of proximal limb electromyograms (EMGs), although the median neural rotation was significantly smaller than that of muscles. For a given neuron, the rotation angle was very consistent, even across multiple sessions. Within the limits of measurement uncertainty, both the neural and EMG changes occurred nearly instantaneously, reaching a steady state despite ongoing behavioral adaptation. Our results suggest that M1 is not directly involved in the adaptive changes that occurred within an experimental session. Rather, most M1 neurons are directly related to the dynamics of muscle activation that themselves reflect the external load. It appears as though gain modulation, the differential recruitment of M1 neurons by higher motor areas, can account for the load and behavioral adaptation-related changes in M1 discharge.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Hong Gi Yeom ◽  
June Sic Kim ◽  
Chun Kee Chung

The neural mechanism of skilled movements, such as reaching, has been considered to differ from that of rhythmic movement such as locomotion. It is generally thought that skilled movements are consciously controlled by the brain, while rhythmic movements are usually controlled autonomously by the spinal cord and brain stem. However, several studies in recent decades have suggested that neural networks in the spinal cord may also be involved in the generation of skilled movements. Moreover, a recent study revealed that neural activities in the motor cortex exhibit rhythmic oscillations corresponding to movement frequency during reaching movements as rhythmic movements. However, whether the oscillations are generated in the spinal cord or the cortical circuit in the motor cortex causes the oscillations is unclear. If the spinal cord is involved in the skilled movements, then similar rhythmic oscillations with time delays should be found in macroscopic neural activity. We measured whole-brain MEG signals during reaching. The MEG signals were analyzed using a dynamical analysis method. We found that rhythmic oscillations with time delays occur in all subjects during reaching movements. The results suggest that the corticospinal system is involved in the generation and control of the skilled movements as rhythmic movements.


2009 ◽  
Author(s):  
Jos J. Adam ◽  
Susan Hoonhorst ◽  
Rick Muskens ◽  
Jay Pratt ◽  
Martin H. Fischer

2009 ◽  
Vol 36 (S 02) ◽  
Author(s):  
MF Nitschke ◽  
K Ludwig ◽  
G Vassilev ◽  
D Kömpf ◽  
F Binkofski
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document