H-WPS: Hybrid Wireless Positioning System Using an Enhanced Wi-Fi FTM/RSSI/MEMS Sensors Integration Approach

Author(s):  
Yue Yu ◽  
Ruizhi Chen ◽  
Liang Chen ◽  
Wei Li ◽  
Yuan Wu ◽  
...  
Author(s):  
A H Ismail ◽  
J S Ngo ◽  
M I Taib ◽  
M S M Hashim ◽  
M S M Azmi ◽  
...  

2012 ◽  
Vol 6 (3) ◽  
pp. 444-454 ◽  
Author(s):  
Guannan Zhao ◽  
Donglin Wang ◽  
M. Fattouche ◽  
Minglu Jin

2013 ◽  
Vol 437 ◽  
pp. 870-875 ◽  
Author(s):  
Zhong Liang Deng ◽  
Fei Peng Xie ◽  
Yan Pei Yu ◽  
Xiao Hong Zhao ◽  
Zhuang Yuan

In order to solve the discontinuity of navigation and positioning in indoor signal coverage blind areas, and false region judgment caused by positioning error, an integrated method combining Wireless Positioning System (WPS), Pedestrian Dead Reckoning (PDR) and Map Matching (MM) is presented in this paper. By using the combination of Kalman filtered WPS and PDR information, inertial information and geographic information, pedestrian position could be evaluated. Through experiment, this method effectively increased positioning accuracy of the system as well as greatly improved the user experience.


2022 ◽  
Vol 2160 (1) ◽  
pp. 012074
Author(s):  
Yong Cao ◽  
Yifan Zheng ◽  
Xiao Wang ◽  
Yanbo Liu ◽  
Yi Liu

Abstract Indoor positioning has become a research hotspot because of its important application value in industrial production and daily life. Traditional wireless positioning technologies such as Wi Fi and Bluetooth are difficult to achieve high-precision indoor positioning due to electromagnetic interference and multipath effect. The modulated white LED can not only meet the needs of lighting, but also transmit the location information to achieve high-precision indoor positioning. This paper first introduces several modulation methods commonly used in visible light positioning system, compares the characteristics of different modulation methods, and proposes a modulation method suitable for visible light positioning; Then, two demodulation methods of the visible light positioning system are introduced and discussed; After that, several visible light location algorithms are introduced, and the performance of each algorithm is analyzed in detail; Finally, the problems in visible light positioning are discussed and prospected.


Author(s):  
Mohammed Abdullah Al Rashed ◽  
Tariq Pervez Sattar

Purpose – The purpose of this paper is to develop a wireless positioning system. The automation of non-destructive testing (NDT) of large and complex geometry structures such as aircraft wings and fuselage is prohibitively expensive, though automation promises to improve on manual ultrasound testing. One inexpensive way to achieve automation is by using a small wall-climbing mobile robot to move a single ultrasound probe over the surface through a scanning trajectory defined by a qualified procedure. However, the problem is to guide the robot though the trajectory and know whether it has followed it accurately to confirm that the qualified procedure has been carried out. Design/methodology/approach – The approach is to use sophisticated bulk electronics developed for game playing in combination with MATLAB to develop a wireless positioning system. Findings – The paper describes the development of an inexpensive wireless system comprising an optical spatial positioning system and inertial measurement unit that relates the 3D location of an NDT probe carried by a mobile robot to a computer-aided drawing (CAD) representation of the test structure in a MATLAB environment. The probe is located to an accuracy of ± 2 mm at distances of 5 m. Research limitations/implications – Positioning range is limited to 5 m. Further development is required to increase this range. Practical implications – The wireless system is used to develop tools to guide the robot remotely to follow a desired scanning trajectory, obtain feedback about the actual trajectory executed by the robot, know exactly where an ultrasound pulse echo was captured, map identified defects on the CAD and relate them to the real test object. Originality/value – An inexpensive spatial positioning system with sufficient accuracy for automated NDT purposes.


Sign in / Sign up

Export Citation Format

Share Document