pedestrian navigation
Recently Published Documents


TOTAL DOCUMENTS

537
(FIVE YEARS 115)

H-INDEX

34
(FIVE YEARS 4)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 209
Author(s):  
Tianyu Chen ◽  
Gongliu Yang ◽  
Qingzhong Cai ◽  
Zeyang Wen ◽  
Wenlong Zhang

Pedestrian Navigation System (PNS) is one of the research focuses of indoor positioning in GNSS-denied environments based on the MEMS Inertial Measurement Unit (MIMU). However, in the foot-mounted pedestrian navigation system with MIMU or mobile phone as the main carrier, it is difficult to make the sampling time of gyros and accelerometers completely synchronous. The gyro-accelerometer asynchronous time affects the positioning of PNS. To solve this problem, a new error model of gyro-accelerometer asynchronous time is built. The effect of gyro-accelerometer asynchronous time on pedestrian navigation is analyzed. A filtering model is designed to calibrate the gyro-accelerometer asynchronous time, and a zero-velocity detection method based on the rate of attitude change is proposed. The indoor experiment shows that the gyro-accelerometer asynchronous time is estimated effectively, and the positioning accuracy of PNS is improved by the proposed method after compensating for the errors caused by gyro-accelerometer asynchronous time.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yushuai Zhang ◽  
Jianxin Guo ◽  
Feng Wang ◽  
Rui Zhu ◽  
Liping Wang

The specific objective of this study is to propose a low-cost indoor navigation framework with nonbasic equipment by combining inertial sensors and indoor map messages. The proposed pedestrian navigation framework consists of a lower filter and an upper filter. In the lower filter which is designed based on the Kalman filter, the adaptive zero velocity detection algorithm is used to detect the zero velocity interval at different motion speeds, and then, zero velocity update is applied to rectify the inertial navigation solutions’ errors. In the upper filter which is designed based on the nonrecursive Bayesian filter, the map matching method with nonrecursive Bayesian filter is adopted to fuse the map prior information and the lower filter estimation results to correct the errors of navigation. The position estimation presented in this study achieves an average position error of 0.53 m compared to the ZUPT-aided inertial navigation system (INS) method under different motion states. The proposed pedestrian navigation algorithm achieves an average position error of 0.54 m as compared to the ZUPT-aided INS method among the different tested distances. The proposed framework simplifies the indoor positioning system under multiple motion speed conditions by ensuring the accuracy and stability property. The effectiveness and accuracy of the proposed framework are experimentally verified in various real-world scenarios.


2021 ◽  
Author(s):  
Litao Zhu ◽  
Jie Shen ◽  
Jingyi Zhou ◽  
Zdeněk Stachoň ◽  
Shuai Hong ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiaomeng Wu ◽  
Liying Zhao ◽  
Shuli Guo ◽  
Lintong Zhang

The foot-mounted pedestrian navigation system (PNS) that uses microelectromechanical systems (MEMS) inertial measurement units (IMUs) to track the person’s position. However errors accumulate over time during inertial navigation solutions, which affects the positioning precision. In this paper, a multicondition zero velocity detector is used to detect the stance phase of gait. Then the errors are corrected in the stance phase and the swing phase, respectively, through the Kalman filter. When pedestrians are going up and down the stairs, the divergence of height will reduce the accuracy of three-dimensional positioning. In this paper, an accelerometer and a barometer are used to obtain altitude variation, and after that the stair condition detection (SCD) algorithm is proposed to correct the height of Kalman filter output and detect the walking state of pedestrians. Through theoretical research and field experiments, these algorithms are studied carefully. The results of the experiment show that the algorithm proposed in this paper can effectively eliminate errors and achieve more accurate positioning.


GPS Solutions ◽  
2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Xianlu Tao ◽  
Feng Zhu ◽  
Xin Hu ◽  
Wanke Liu ◽  
Xiaohong Zhang

2021 ◽  
Author(s):  
Langping An ◽  
Xianfei Pan ◽  
Mang Wang ◽  
Ze Chen ◽  
Zheming Tu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document