scholarly journals Investigation of the Optical Modal Properties of Al+3Doped ZnO-Coated Au Waveguide for Gas Sensing Applications Using the Finite Element Method

2016 ◽  
Vol 16 (5) ◽  
pp. 1176-1181 ◽  
Author(s):  
N. T. Kejalakshmy ◽  
Kenneth T. V. Grattan ◽  
B. M. Azizur Rahman
2011 ◽  
Vol 50 (25) ◽  
pp. E177 ◽  
Author(s):  
Kejalakshmy Namassivayane ◽  
Huda Tanvir ◽  
Anita Quadir ◽  
B. M. Azizur Rahman ◽  
Kenneth T. V. Grattan

2021 ◽  
Vol 3 (2) ◽  
pp. 68-86
Author(s):  
Smitha T. V. ◽  
Madhura S ◽  
Shreya N ◽  
Sahana Udupa

This paper examines the use of the Finite Element Method (FEM) in the field of optical waveguides and terahertz signals, with the main goal of explaining how this method aids in recent advances in this field. The basics of FEM are briefly reviewed, and the technique's application to waveguide discontinuity analysis is observed. Second-order and higher-order derivatives result from optical waveguide modeling, which is significant for information exchange and many other nonlinear phenomena. The use of FEM in the improvised design of hexagonal sort air hole porous core microstructure fibers, which produces hexagonal structure cladding and rectangular-shaped air holes in the fiber core for excellent terahertz signal transmission, was also observed. These modifications were intended to improve the fiber's properties in comparison to other structures. This approach verifies that the fiber has high birefringence, low material loss, a high-power fraction, and minimal dispersion varia-tion. The features of square-type microstructure fiber are investigated. A folded-shaped po-rous cladding design is recognized for sensing applications. This type of photonic crystal fiber is also known as FP-PCF since it features circular air holes. The most approximate findings of this application are obtained using FEM. In comparison to many other approach-es for various applications, it is evident that FEM is a powerful and numerically efficient tool. This work does a survey of optical waveguides and terahertz signals using the Finite Element Method. Terahertz signals can be used in conjunction with electromagnetic waves to identify viruses. Thus, Terahertz signals are employed in real-world applications such as fuel adulteration, liquid metal synthesis, and virus detection.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document