Long-Time Coherent Integration for Maneuvering Target Detection Based on ITRT-MRFT

2020 ◽  
Vol 20 (7) ◽  
pp. 3718-3731 ◽  
Author(s):  
Lanjin Lin ◽  
Guohao Sun ◽  
Ziyang Cheng ◽  
Zishu He
2021 ◽  
Vol 13 (17) ◽  
pp. 3367
Author(s):  
Jibin Zheng ◽  
Kangle Zhu ◽  
Zhiyong Niu ◽  
Hongwei Liu ◽  
Qing Huo Liu

The multivariate range function of the high-speed maneuvering target induces modulations on both the envelop and phase, i.e., the range cell migration (RCM) and Doppler frequency migration (DFM) which degrade the long-time coherent integration used for detection and localization. To solve this problem, many long-time coherent integration methods have been proposed. Based on mechanisms of typical methods, this paper names two signal processing modes, i.e., processing unification (PU) mode and processing separation (PS) mode, and presents their general forms. Thereafter, based on the principle of the PS mode, a novel long-time coherent integration method, known as the generalized dechirp-keystone transform (GDKT), is proposed for radar high-speed maneuvering target detection and localization. The computational cost, energy integration, peak-to-sidelobe level (PSL), resolution, and anti-noise performance of the GDKT are analyzed and compared with those of the maximum likelihood estimation (MLE) method and keystone transform-dechirp (KTD) method. With mathematical analyses and numerical simulations, we validate two main superiorities of the GDKT, including (1) the statistically optimal anti-noise performance, and (2) the low computational cost. The real radar data is also used to validate the GDKT. It is worthwhile noting that, based on closed analytical formulae of the MLE method, KTD method, and GDKT, several doubts in radar high-speed maneuvering target detection and localization are mathematically interpreted, such as the blind speed sidelobe (BSSL) and the relationship between the PU and PS modes.


2020 ◽  
Vol 20 (16) ◽  
pp. 9394-9407 ◽  
Author(s):  
Ke Jin ◽  
Gongquan Li ◽  
Tao Lai ◽  
Tian Jin ◽  
Yongjun Zhao

2021 ◽  
Vol 13 (4) ◽  
pp. 701 ◽  
Author(s):  
Binbin Wang ◽  
Hao Cha ◽  
Zibo Zhou ◽  
Bin Tian

Clutter cancellation and long time integration are two vital steps for global navigation satellite system (GNSS)-based bistatic radar target detection. The former eliminates the influence of direct and multipath signals on the target detection performance, and the latter improves the radar detection range. In this paper, the extensive cancellation algorithm (ECA), which projects the surveillance channel signal in the subspace orthogonal to the clutter subspace, is first applied in GNSS-based bistatic radar. As a result, the clutter has been removed from the surveillance channel effectively. For long time integration, a modified version of the Fourier transform (FT), called long-time integration Fourier transform (LIFT), is proposed to obtain a high coherent processing gain. Relative acceleration (RA) is defined to describe the Doppler variation results from the motion of the target and long integration time. With the estimated RA, the Doppler frequency shift compensation is carried out in the LIFT. This method achieves a better and robust detection performance when comparing with the traditional coherent integration method. The simulation results demonstrate the effectiveness and advantages of the proposed processing method.


2015 ◽  
Vol 22 (9) ◽  
pp. 1467-1471 ◽  
Author(s):  
Xiaolong Li ◽  
Guolong Cui ◽  
Wei Yi ◽  
Lingjiang Kong

Author(s):  
Xiaolong Li Xiaolong Li ◽  
Guolong Cui Guolong Cui ◽  
Wei Yi Wei Yi ◽  
Lingjiang Kong Lingjiang Kong

Sign in / Sign up

Export Citation Format

Share Document