scholarly journals Accounting for label errors when training a convolutional neural network to estimate sea ice concentration using operational ice charts

Author(s):  
Manveer Tamber ◽  
K Andrea Scott ◽  
Leif Toudal Pedersen
2019 ◽  
Vol 11 (9) ◽  
pp. 1071
Author(s):  
Minjoo Choi ◽  
Liyanarachchi Waruna Arampath De Silva ◽  
Hajime Yamaguchi

In this paper, we applied an artificial neural network (ANN) to the short-term prediction of the Arctic sea ice concentration (SIC). The prediction was performed using encoding and decoding processes, in which a gated recurrent unit encodes sequential sea ice data, and a feed-forward neural network model decodes the encoded input data. Because of the large volume of Arctic sea ice data, the ANN predicts the future SIC of each cell individually. The limitation of these singular predictions is that they do not use information from other cells. This results in low accuracy, particularly when there are drastic changes during melting and freezing seasons. To address this issue, we present a new data scheme including global and local SIC information, where the global information is represented by sea ice statistics. We trained ANNs using different data schemes and network architectures, and then compared their performances quantitatively and visually. The results show that, compared with a data scheme that uses only local sea ice information, the newly proposed scheme leads to a significant improvement in prediction accuracy.


Author(s):  
David Llaveria ◽  
Juan Francesc Munoz-Martin ◽  
Christoph Herbert ◽  
Miriam Pablos ◽  
Adriano Camps ◽  
...  

2014 ◽  
Vol 8 (2) ◽  
pp. 2213-2241
Author(s):  
J. Karvonen

Abstract. We have studied the possibility of combining the high-resolution SAR segmentation and ice concentration estimated by radiometer brightness temperatures. Here we present an algorithm for mapping a radiometer-based concentration value for each SAR segment. The concentrations are estimated by a MLP neural network which has the AMSR-2 radiometer polarization ratios and gradient ratios of four radiometer channels as its inputs. The results have been compared numerically to the gridded FMI ice chart concentrations and high-resolution AMSR-2 ASI algorithm concentrations provided by University of Hamburg and also visually to the AMSR-2 bootstrap algorithm concentrations, which are given in much coarser resolution. The results when compared to FMI ice charts were very promising.


Sign in / Sign up

Export Citation Format

Share Document