Resource Allocation in Reverse TDD Wireless Backhaul HetNets With 3D Massive Antennas

2018 ◽  
Vol 7 (1) ◽  
pp. 30-33 ◽  
Author(s):  
Jinping Niu ◽  
Geoffrey Y. Li ◽  
Xiaojiang Chen ◽  
Jie Zheng ◽  
Dingyi Fang ◽  
...  
2020 ◽  
Author(s):  
Long Zhang ◽  
Guobin Zhang ◽  
Xiaofang Zhao ◽  
Yali Li ◽  
Chuntian Huang ◽  
...  

A coupling of wireless access via non-orthogonal multiple access and wireless backhaul via beamforming is a promising way for downlink user-centric ultra-dense networks (UDNs) to improve system performance. However, ultra-dense deployment of radio access points in macrocell and user-centric view of network design in UDNs raise important concerns about resource allocation and user association, among which notably is energy efficiency (EE) balance. To overcome this challenge, we develop a framework to investigate the resource allocation problem for energy efficient user association in such a scenario. The joint optimization framework aiming at the system EE maximization is formulated as a large-scale non-convex mixed-integer nonlinear programming problem, which is NP-hard to solve directly with lower complexity. Alternatively, taking advantages of sum-of-ratios decoupling and successive convex approximation methods, we transform the original problem into a series of convex optimization subproblems. Then we solve each subproblem through Lagrangian dual decomposition, and design an iterative algorithm in a distributed way that realizes the joint optimization of power allocation, sub-channel assignment, and user association simultaneously. Simulation results demonstrate the effectiveness and practicality of our proposed framework, which achieves the rapid convergence speed and ensures a beneficial improvement of system-wide EE.<br>


2017 ◽  
Vol 21 (10) ◽  
pp. 2286-2289 ◽  
Author(s):  
Jinping Niu ◽  
Geoffrey Y. Li ◽  
Yanyan Li ◽  
Dingyi Fang ◽  
Xun Li

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 104279-104293 ◽  
Author(s):  
Chunyu Pan ◽  
Jirong Yi ◽  
Changchuan Yin ◽  
Jian Yu ◽  
Xuehua Li

2020 ◽  
Author(s):  
Long Zhang ◽  
Guobin Zhang ◽  
Xiaofang Zhao ◽  
Yali Li ◽  
Chuntian Huang ◽  
...  

A coupling of wireless access via non-orthogonal multiple access (NOMA) and wireless backhaul via beamforming is a promising way for downlink user-centric ultra-dense networks (UDNs) to improve system performance. However, the ultra-dense deployment of radio access points in macrocell and the user-centric view of network design in UDNs raise important concerns about resource allocation and user association, among which notably is energy efficiency (EE) balance. To overcome this challenge, we develop a framework to investigate the resource allocation problem for energy efficient user association in such a scenario. The joint optimization framework aiming at the system EE maximization is formulated as a large-scale non-convex mixed-integer nonlinear programming problem, which is NP-hard to solve directly with lower complexity. Alternatively, taking advantages of the sum-of-ratios decoupling and successive convex approximation methods, we transform the original problem into a series of convex optimization subproblems. Furthermore, we solve each subproblem through the Lagrangian dual decomposition, and design an iterative algorithm in a distributed way that realizes the joint optimization of power allocation, sub-channel assignment, and user association simultaneously. Simulation results demonstrate the effectiveness and practicality of our proposed framework, which achieves the rapid convergence speed and ensures a beneficial improvement of system-wide EE.


Sign in / Sign up

Export Citation Format

Share Document