Validation Flight Experiment for a Sounding Balloon Photovoltaic-based Attitude Determination System

Author(s):  
Giuseppe Cataldi ◽  
Matteo Gemignani ◽  
Salvo Marcuccio
2016 ◽  
Vol 58 (9) ◽  
pp. 1671-1681 ◽  
Author(s):  
Lijun Zhang ◽  
Shan Qian ◽  
Shifeng Zhang ◽  
Hong Cai

GPS Solutions ◽  
2012 ◽  
Vol 17 (1) ◽  
pp. 129-138 ◽  
Author(s):  
Christian Eling ◽  
Philipp Zeimetz ◽  
Heiner Kuhlmann

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7296
Author(s):  
Guanqing Li ◽  
Lasse Klingbeil ◽  
Florian Zimmermann ◽  
Shengxiang Huang ◽  
Heiner Kuhlmann

Immersed tunnel elements need to be exactly controlled during their immersion process. Position and attitude of the element should be determined quickly and accurately to navigate the element from the holding area to the final location in the tunnel trench. In this paper, a newly-developed positioning and attitude determination system, integrating a 3-antenna Global Navigation Satellite System (GNSS) system, an inclinometer and a range-measurement system, is presented. The system is designed to provide the absolute position of both ends of the element with sufficient accuracy in real time. Special attention in the accuracy analysis is paid to the influence of GNSS multipath error and sound speed profile. Simulations are conducted to illustrate the performance of the system in different scenarios. If both elements are very close, the accuracies of the system are higher than 0.02 m in the directions perpendicular to and along the tunnel axis.


2018 ◽  
Vol 15 (3) ◽  
pp. 172988141877993 ◽  
Author(s):  
Rong Wang ◽  
Zhi Xiong ◽  
Jianye Liu ◽  
Yuxuan Cao

In high-altitude, long-endurance unmanned aerial vehicles, a celestial attitude determination system is used to enhance the inertial navigation system (INS)/global positioning system (GPS) to achieve the required attitude performance. The traditional federal filter is not applicable for INS/GPS/celestial attitude determination system information fusion because it does not consider the mutually coupled relationship between the horizontal reference error in the celestial attitude determination system and the navigation error; this limitation results in reduced navigation accuracy. This article proposes a novel stepwise fusion algorithm with dual correction for multi-sensor navigation. Considering the horizontal reference error, the celestial attitude determination system measurement model is constructed and the issues involved in applying the federal filter are discussed. Then, preliminary error estimation and horizontal reference compensation are added to the navigation architecture. In addition, a sequential update strategy is derived to estimate the attitude error with the compensated celestial attitude determination system based on the preliminary estimation. A stepwise correction filtering algorithm with interactive preliminary and sequential updates that can effectively fuse celestial attitude determination system measurements with the INS/GPS is constructed. High-altitude, long-endurance unmanned aerial vehicle navigation in a remote sensing task is simulated to verify the performance of the proposed method. The simulation results demonstrate that the horizontal reference error is effectively compensated, and the attitude accuracy is significantly improved after stepwise error estimation and correction. The proposed method also provides a novel multi-sensor integrated navigation architecture with mutually coupled errors; this architecture is beneficial in unmanned aerial vehicle navigation applications.


Sign in / Sign up

Export Citation Format

Share Document