attitude determination
Recently Published Documents


TOTAL DOCUMENTS

1503
(FIVE YEARS 249)

H-INDEX

35
(FIVE YEARS 6)

Author(s):  
Hossein Ghadiri ◽  
Reza Esmaelzadeh ◽  
Reza Zardashti

Author(s):  
Hyosang Yoon ◽  
Kiwook Baeck ◽  
Junsung Wi

AbstractA star tracker calibration method using star images is presented in this paper. Unlike previous works, the proposed method estimates all parameters and the attitudes at once in a single least-squares formulation for the optimal calibration, which can be easily converted to a recursive estimation form. In addition, this paper presents a method to estimate the overall star tracker performance for attitude determination from the calibration results. Since the proposed method uses star images only, it can be applied to both on-orbit and ground star tracker calibration. The simulations show improvements in calibration performance about four times compared to the previous calibration method. The calibration experiments with actual star images are conducted to test its application.


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 64
Author(s):  
Yinzhi Zhao ◽  
Jingui Zou ◽  
Peng Zhang ◽  
Jiming Guo ◽  
Xinzhe Wang ◽  
...  

The global navigation satellite system (GNSS)-based multi-antenna attitude determination method has the advantages of a simple algorithm and no error accumulation with time in long endurance operation. However, it is sometimes difficult to simultaneous obtain the fixed solutions of all antennas in vehicle attitude determination. If float or incorrect fixed solutions are used, precision and reliability of attitude cannot be guaranteed. Given this fact, a baseline-constrained ambiguity function method (BCAFM) based on a self-built four GNSS antennas hardware platform is proposed. The coordinates obtained by BCAFM can replace the unreliable real-time kinematic (RTK) float or incorrect fixed solutions, so as to assist the direct method for attitude determination. In the proposed BCAFM, the baseline constraint is applied to improve search efficiency (searching time), and the ambiguity function value (AFV) formula is optimized to enhance the discrimination of true peak. The correctness of the proposed method is verified by vehicle attitude determination results and baseline length difference. Experimental results demonstrate that the function values of error peaks are reduced, and the only true peak can be identified accurately. The valid epoch proportion increases by 14.95% after true peak coordinates are used to replace the GNSS-RTK float or incorrect fixed solutions. The precision of the three attitude angles is 0.54°, 1.46°, and 1.15°, respectively. Meanwhile, the RMS of baseline length difference is 3.8mm.


2021 ◽  
Vol 14 (1) ◽  
pp. 126
Author(s):  
Fan Yang ◽  
Lei Liang ◽  
Changqing Wang ◽  
Zhicai Luo

The satellite gravity mission GRACE(-FO) has not yet reached its designed baseline accuracy. Previous studies demonstrated that the deficiency in the sensor system or the related signal processing might be responsible, which in turn motivates us to keep revising the sensor data processing, typically the spacecraft’s attitude. Many efforts in the past have been made to enhance the attitude modeling for GRACE, for instance, the latest release reprocesses the attitude by fusing the angular acceleration with the star camera/tracker (SC) measurements, which helps to reduce the error in Level-2 temporal gravity fields. Therefore, in addition to GRACE, revising GRACE-FO attitude determination might make sense as well. This study starts with the most original raw GRACE-FO Level-1A data including those from three SCs and one IMU (Inertial Measurement Unit) sensors, and manage to generate a new publicly available Level-1B attitude product called HUGG-01 covering from June 2018 to December 2020, using our independently-developed software. The detailed treatment of individual payload is present in this study, and an indirect Kalman filter method is introduced to fuse the multiple sensors to acquire a relatively stable and precise attitude estimation. Unlike the direct SC combination method with a predefined weight as recommended in previous work, we propose an involvement of each SC measurement in the Kalman filter to enable a dynamic weight adjustment. Intensive experiments are further carried out to assess the HUGG-01, which demonstrate that the error level of HUGG-01 is entirely within the design requirement, i.e., the resulting KBR pointing variations are well controlled within 1 mrad (pitch), 5 mrad (roll) and 1 mrad (yaw). Moreover, comparisons with the official JPL-V04 attitude product demonstrate an equivalent performance in the low-to-middle spectrum, with even a slightly lower noise level (in the high spectrum) than JPL-V04. Further analysis on KBR range-rate residuals and gravity recovery on Jan 2019 indicates that, i.e., RMS of the difference (HUGG-01 minus JPL-V04) for the range rate is less than 3.234×10−8 m/s, and the amplitude of geoid height difference is approximately 0.5 cm. Both differences are below the sensitivity of the state-of-the-art satellite gravity mission, demonstrating a good agreement between HUGG-01 and JPL-V04.


Author(s):  
János Takátsy ◽  
Tamás Bozóki ◽  
Gergely Dálya ◽  
Kornél Kapás ◽  
László Mészáros ◽  
...  

AbstractThis paper is the second part of a series of studies discussing a novel attitude determination method for nano-satellites. Our approach is based on the utilization of thermal imaging sensors to determine the direction of the Sun and the nadir with respect to the satellite with sub-degree accuracy. The proposed method is planned to be applied during the Cubesats Applied for MEasuring and LOcalising Transients (CAMELOT) mission aimed at detecting and localizing gamma-ray bursts with an efficiency and accuracy comparable to large gamma-ray space observatories. In our previous work we determined the spherical projection function of the MLX90640 infrasensors planned to be used for this purpose. We showed that with the known projection function the direction of the Sun can be located with an overall accuracy of $$\sim 40^\prime$$ ∼ 40 ′ . In this paper we introduce a simulation model aimed at testing the applicability of our attitude determination approach. Its first part simulates the orbit and rotation of a satellite with arbitrary initial conditions while its second part applies our attitude determination algorithm which is based on a multiplicative extended Kalman filter. The simulated satellite is assumed to be equipped with a GPS system, MEMS gyroscopes and the infrasensors. These instruments provide the required data input for the Kalman filter. We demonstrate the applicability of our attitude determination algorithm by simulating the motion of a nano-satellite on Low Earth Orbit. Our results show that the attitude determination may have a 1$$\sigma$$ σ error of $$\sim 30'$$ ∼ 30 ′ even with a large gyroscope drift during the orbital periods when the infrasensors provide both the direction of the Sun and the Earth (the nadir). This accuracy is an improvement on the point source detection accuracy of the infrasensors. However, the attitude determination error can get as high as 25$$^{\circ }$$ ∘ during periods when the Sun is occulted by the Earth. We show that following an occultation period the attitude information is immediately recovered by the Kalman filter once the Sun is observed again.


2021 ◽  
Author(s):  
Shan Li ◽  
Donghua Zhao ◽  
Hua Yu ◽  
Tao Jin ◽  
Chenguang Wang ◽  
...  

2021 ◽  
Vol 2132 (1) ◽  
pp. 012009
Author(s):  
Wentao Lu ◽  
Gengxin Hua ◽  
Yunfu Zhao ◽  
Jiantao Zhou

Abstract With the rapid-development of AI technology, artificial intelligence algorithms for the aerospace applications have shown very good simulation performance in many areas. Among the spaceborne application fields, star identification can be seen as a typical pattern recognition process. It’s also the key part of attitude determination of the satellites, which requires the algorithm to be robust and efficient due to the limited computing and storing resources of the spaceborne computers. Nevertheless, most of the previous algorithms are not possible to be applied in practical due to the reasons above. This article proposes a strategy of constructing ‘net-structure’ images of stars to build the datasets for training and testing. Besides, a hierarchical convolutional neural network(CNN) with a small size is also designed. It performs good results on robustness and efficiency in the experiments. In the end, a method of fusing the Conv layers and the batch normalization (BN)layers is also adopted to further accelerate the algorithm.


Sign in / Sign up

Export Citation Format

Share Document