global navigation satellite
Recently Published Documents


TOTAL DOCUMENTS

2386
(FIVE YEARS 1324)

H-INDEX

37
(FIVE YEARS 12)

2022 ◽  
Vol 14 (2) ◽  
pp. 401
Author(s):  
Mokhamad Nur Cahyadi ◽  
Buldan Muslim ◽  
Danar Guruh Pratomo ◽  
Ira Mutiara Anjasmara ◽  
Deasy Arisa ◽  
...  

The study of ionospheric disturbances associated with the two large strike-slip earthquakes in Indonesia was investigated, which are West Sumatra on 2 March 2016 (Mw = 7.8), and Palu on 28 September 2018 (Mw = 7.5). The anomalies were observed by measuring co-seismic ionospheric disturbances (CIDs) using the Global Navigation Satellite System (GNSS). The results show positive and negative CIDs polarization changes for the 2016 West Sumatra earthquake, depending on the position of the satellite line-of-sight, while the 2018 Palu earthquake shows negative changes only due to differences in co-seismic vertical crustal displacement. The 2016 West Sumatra earthquake caused uplift and subsidence, while the 2018 Palu earthquake was dominated by subsidence. TEC anomalies occurred about 10 to 15 min after the two earthquakes with amplitude of 2.9 TECU and 0.4 TECU, respectively. The TEC anomaly amplitude was also affected by the magnitude of the earthquake moment. The disturbance signal propagated with a velocity of ~1–1.72 km s−1 for the 2016 West Sumatra earthquake and ~0.97–1.08 km s−1 for the 2018 Palu mainshock earthquake, which are consistent with acoustic waves. The wave also caused an oscillation signal of ∼4 mHz, and their azimuthal asymmetry of propagation confirmed the phenomena in the Southern Hemisphere. The CID signal could be identified at a distance of around 400–1500 km from the epicenter in the southwestern direction.


2022 ◽  
Vol 14 (2) ◽  
pp. 379
Author(s):  
Dongsheng Zhang ◽  
Zhenyang Yu ◽  
Yan Xu ◽  
Li Ding ◽  
Hu Ding ◽  
...  

Image-based displacement measurement techniques are widely used for sensing the deformation of structures, and plays an increasing role in structural health monitoring owing to its benefit of non-contacting. In this study, a non-overlapping dual camera measurement model with the aid of global navigation satellite system (GNSS) is proposed to sense the three-dimensional (3D) displacements of high-rise structures. Each component of the dual camera system can measure a pair of displacement components of a target point in a 3D space, and its pose relative to the target can be obtained by combining a built-in inclinometer and a GNSS system. To eliminate the coupling of lateral and vertical displacements caused by the perspective projection, a homography-based transformation is introduced to correct the inclined image planes. In contrast to the stereo vision-based displacement measurement techniques, the proposed method does not require the overlapping of the field of views and the calibration of the vision geometry. Both simulation and experiment demonstrate the feasibility and correctness of the proposed method, heralding that it has a potential capacity in the field of remote health monitoring for high-rise buildings.


Author(s):  
Balazs Lupsic ◽  
Bence Takacs

AbstractThe number of devices equipped with global satellite positioning has exceeded seven billion recently. There are a wide variety of receivers regarding their accuracy and reliability. Low cost, multi-frequency units have been released on the market latterly; however, the number of single-frequency receivers is still significant. Since their measurements are influenced by ionospheric delay, accurate ionosphere models are of utmost importance to reduce the effect. This paper summarizes how Gauss process regression (GPR) can be applied to derive near real-time regional ionosphere models using raw Global Navigation Satellite System (GNSS) observations of permanent stations. While Gauss process is widely used in machine learning, GPR is a nonparametric, Bayesian approach to regression. GPR has several benefits for ionosphere monitoring since it is quite robust and efficient to derive a grid model from data available in irregular set of ionospheric pierce points. The corresponding instrumental delays are estimated by a parallel Kalman filter. The presented algorithm can be applied near real-time, however the results are offline calculated and are compared to two high quality TEC map products. Based on the analysis, the accuracy of the GPR modell is in 2 TECu range. The developed methods could be efficiently applied in the field of autonomous vehicle navigation with meeting both accuracy and integrity requirements.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 540
Author(s):  
Ola Elfmark ◽  
Gertjan Ettema ◽  
Petter Jølstad ◽  
Matthias Gilgien

The purpose of this study was to find a generic method to determine the aerial phase of ski jumping in which the athlete is in a steady gliding condition, commonly known as the ‘stable flight’ phase. The aerial phase of ski jumping was investigated from a physical point mass, rather than an athlete–action-centered perspective. An extensive data collection using a differential Global Navigation Satellite System (dGNSS) was carried out in four different hill sizes. A total of 93 jumps performed by 19 athletes of performance level, ranging from junior to World Cup, were measured. Based on our analysis, we propose a generic algorithm that identifies the stable flight based on steady glide aerodynamic conditions, independent of hill size and the performance level of the athletes. The steady gliding is defined as the condition in which the rate-of-change in the lift-to-drag-ratio (LD-ratio) varies within a narrow band-width described by a threshold τ. For this study using dGNSS, τ amounted to 0.01s−1, regardless of hill size and performance level. While the absolute value of τ may vary when measuring with other sensors, we argue that the methodology and algorithm proposed to find the start and end of a steady glide (stable flight) could be used in future studies as a generic definition and help clarify the communication of results and enable more precise comparisons between studies.


2022 ◽  
Vol 12 (2) ◽  
pp. 693
Author(s):  
Dorijan Radočaj ◽  
Ivan Plaščak ◽  
Goran Heffer ◽  
Mladen Jurišić

The high-precision positioning and navigation of agricultural machinery represent a backbone for precision agriculture, while its worldwide implementation is in rapid growth. Previous studies improved low-cost global navigation satellite system (GNSS) hardware solutions and fused GNSS data with complementary sources, but there is still no affordable and flexible framework for positioning accuracy assessment of agricultural machinery. Such a low-cost method was proposed in this study, simulating the actual movement of the agricultural machinery during agrotechnical operations. Four of the most commonly used GNSS corrections in Croatia were evaluated in two repetitions: Croatian Positioning System (CROPOS), individual base station, Satellite-based Augmentation Systems (SBASs), and an absolute positioning method using a smartphone. CROPOS and base station produced the highest mean GNSS positioning accuracy of 2.4 and 2.9 cm, respectively, but both of these corrections produced lower accuracy than declared. All evaluated corrections produced significantly different median values in two repetitions, representing inconsistency of the positioning accuracy regarding field conditions. While the proposed method allowed flexible and effective application in the field, future studies will be directed towards the reduction of the operator’s subjective impact, mainly by implementing autosteering solutions in agricultural machinery.


2022 ◽  
Vol 14 (2) ◽  
pp. 318
Author(s):  
Meiqian Guan ◽  
Tianhe Xu ◽  
Min Li ◽  
Fan Gao ◽  
Dapeng Mu

Positioning of spacecraft (e.g., geostationary orbit (GEO), high elliptical orbit (HEO), and lunar trajectory) is crucial for mission completion. Instead of using ground control systems, global navigation satellite system (GNSS) can be an effective approach to provide positioning, navigation and timing service for spacecraft. In 2020, China finished the construction of the third generation of BeiDou navigation satellite system (BDS-3); this global coverage system will contribute better sidelobe signal visibility for spacecraft. Meanwhile, with more than 100 GNSS satellites, multi-GNSS navigation performance on the spacecraft is worth studying. In this paper, instead of using signal-in-space ranging errors, we simulate pseudorange observations with measurement noises varying with received signal powers. Navigation performances of BDS-3 and its combinations with other systems were conducted. Results showed that, owing to GEO and inclined geosynchronous orbit (IGSO) satellites, all three types (GEO, HEO, and lunar trajectory) of spacecraft received more signals from BDS-3 than from other navigation systems. Single point positioning (SPP) accuracy of the GEO and HEO spacecraft was 17.7 and 23.1 m, respectively, with BDS-3 data alone. Including the other three systems, i.e., GPS, Galileo, and GLONASS, improved the SPP accuracy by 36.2% and 19.9% for GEO and HEO, respectively. Navigation performance of the lunar probe was significantly improved when receiver sensitivity increased from 20 dB-Hz to 15 dB-Hz. Only dual- (BDS-3/GPS) or multi-GNSS (BDS-3, GPS, Galileo, GLONASS) could provide continuous navigation solutions with a receiver threshold of 15 dB-Hz.


2022 ◽  
Vol 14 (2) ◽  
pp. 300
Author(s):  
Dongpeng Xie ◽  
Jinguang Jiang ◽  
Jiaji Wu ◽  
Peihui Yan ◽  
Yanan Tang ◽  
...  

Aiming at the problem of high-precision positioning of mass-pedestrians with low-cost sensors, a robust single-antenna Global Navigation Satellite System (GNSS)/Pedestrian Dead Reckoning (PDR) integration scheme is proposed with Gate Recurrent Unit (GRU)-based zero-velocity detector. Based on the foot-mounted pedestrian navigation system, the error state extended Kalman filter (EKF) framework is used to fuse GNSS position, zero-velocity state, barometer elevation, and other information. The main algorithms include improved carrier phase smoothing pseudo-range GNSS single-point positioning, GRU-based zero-velocity detection, and adaptive fusion algorithm of GNSS and PDR. Finally, the scheme was tested. The root mean square error (RMSE) of the horizontal error in the open and complex environments is lower than 1 m and 1.5 m respectively. In the indoor elevation experiment where the elevation difference of upstairs and downstairs exceeds 25 m, the elevation error is lower than 1 m. This result can provide technical reference for the accurate and continuous acquisition of public pedestrian location information.


2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Satoshi Fujiwara ◽  
Mikio Tobita ◽  
Shinzaburo Ozawa

AbstractPostseismic deformations continue to occur for a long period after major earthquakes. Temporal changes in postseismic deformations can be approximated using simple functions. Since the 2011 Tohoku-Oki earthquake, operating global navigation satellite system stations have been continuously accumulating a remarkable amount of relevant data. To verify the functional model, we performed statistical data processing on postseismic deformations due to this earthquake and obtained their spatiotemporal distribution. Moreover, we approximated the postseismic deformations over a relatively wide area with a standard deviation of residuals of 1 cm for approximately 10 years using a combined functional model of two logarithmic and one exponential functions; however, the residuals from the functional model exhibited a marked deviation since 2015. Although the pattern of postseismic deformations remained unaltered after the earthquake, a change in the linear deformation occurred from 2015 to date. We reduced the overall standard deviation of the residuals of > 200 stations distributed over > 1000 km to < 0.4 cm in the horizontal component by enhancing the functional model to incorporate this linear deformation. Notably, time constants of the functions were similarly applicable for all stations and components. Furthermore, the spatial distribution of the coefficients of each time constant were nonrandom, and the distribution was spatially smooth, with minute changes in the short wavelengths in space. Thus, it is possible to obtain a gridded model in terms of a spatial function. The spatial distributions of short- and long-period components of the functional model and afterslip and viscoelastic relaxation calculated using the physical model were similar to each other, respectively. Each time function revealed a connotation regarding the physical processes, which provided an understanding of the physical phenomena involved in seismogenesis. The functional model can be used to practical applications, such as discerning small variations and modeling for precise positioning. Graphical Abstract


Information ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 22
Author(s):  
Mohamed Amine Ben Farah ◽  
Elochukwu Ukwandu ◽  
Hanan Hindy ◽  
David Brosset ◽  
Miroslav Bures ◽  
...  

The paper presents a classification of cyber attacks within the context of the state of the art in the maritime industry. A systematic categorization of vessel components has been conducted, complemented by an analysis of key services delivered within ports. The vulnerabilities of the Global Navigation Satellite System (GNSS) have been given particular consideration since it is a critical subcategory of many maritime infrastructures and, consequently, a target for cyber attacks. Recent research confirms that the dramatic proliferation of cyber crimes is fueled by increased levels of integration of new enabling technologies, such as IoT and Big Data. The trend to greater systems integration is, however, compelling, yielding significant business value by facilitating the operation of autonomous vessels, greater exploitation of smart ports, a reduction in the level of manpower and a marked improvement in fuel consumption and efficiency of services. Finally, practical challenges and future research trends have been highlighted.


Sign in / Sign up

Export Citation Format

Share Document