scholarly journals A Planar Microphone Array for Spatial Coherence-Based Source Separation

Author(s):  
Abdullah Fahim ◽  
Prasanga N. Samarasinghe ◽  
Thushara D. Abhayapala ◽  
Hanchi Chen
2017 ◽  
Vol 29 (1) ◽  
pp. 83-93
Author(s):  
Kouhei Sekiguchi ◽  
◽  
Yoshiaki Bando ◽  
Katsutoshi Itoyama ◽  
Kazuyoshi Yoshii

[abstFig src='/00290001/08.jpg' width='300' text='Optimizing robot positions for source separation' ] The active audition method presented here improves source separation performance by moving multiple mobile robots to optimal positions. One advantage of using multiple mobile robots that each has a microphone array is that each robot can work independently or as part of a big reconfigurable array. To determine optimal layout of the robots, we must be able to predict source separation performance from source position information because actual source signals are unknown and actual separation performance cannot be calculated. Our method thus simulates delay-and-sum beamforming from a possible layout to calculate gain theoretically, i.e., the expected ratio of a target sound source to other sound sources in the corresponding separated signal. Robots are moved into the layout with the highest average gain over target sources. Experimental results showed that our method improved the harmonic mean of signal-to-distortion ratios (SDRs) by 5.5 dB in simulation and by 3.5 dB in a real environment.


Author(s):  
W F Xue ◽  
J Chen ◽  
J Q Li ◽  
X F Liu

As the result of vibration emission in air, machine sound signal carries affluent information about the working condition of machine and it can be used to make mechanical fault diagnosis. The fundamental problems with fault diagnosis are the estimation of the number of sound sources and the localization of sound sources. The wave superposition can be employed to identify and locate sound sources, which is based on the idea that an acoustic radiator can be approximated and represented by the sum of the fields due to a finite number of interior point sources. But, in practice, a large number of measurements must be used in order to achieve a desired resolution, which makes the reconstruction process very time-consuming and expensive. In this paper, a combined wave superposition method has been developed reconstruct to acoustic radiation from machine acoustical signals. This method combines the advantages of both the wave superposition and Helmholtz equationleast squares methods, and it allows for reconstruction of the acoustic field from an arbitrary object with relatively few measurements, thus significantly enhancing the reconstruction efficiency. After sound source localization, the blind source separation (BSS) is proposed to extract acoustical feature from the mixed measuring sound signals. In a semi-anechoic chamber, a cross-planar microphone array, which consists of 29 microphones, was successfully applied to obtain the two-dimensional mapping of the sound sources. The location, the sound pressure, and the properties in frequency domain of the sound sources can be found through this method precisely. The experimental results demonstrate that the methods presented can potentially become an acoustical diagnosis tool.


Sign in / Sign up

Export Citation Format

Share Document