microphone arrays
Recently Published Documents


TOTAL DOCUMENTS

739
(FIVE YEARS 136)

H-INDEX

37
(FIVE YEARS 5)

2022 ◽  
Vol 72 ◽  
pp. 101306
Author(s):  
Samuele Cornell ◽  
Maurizio Omologo ◽  
Stefano Squartini ◽  
Emmanuel Vincent

2021 ◽  
Vol 12 (1) ◽  
pp. 108
Author(s):  
Hirokazu Madokoro ◽  
Satoshi Yamamoto ◽  
Kanji Watanabe ◽  
Masayuki Nishiguchi ◽  
Stephanie Nix ◽  
...  

This paper presents an estimation method for a sound source of pre-recorded mallard calls from acoustic information using two microphone arrays combined with delay-and-sum beamforming. Rice farming using mallards saves labor because mallards work instead of farmers. Nevertheless, the number of mallards declines when they are preyed upon by natural enemies such as crows, kites, and weasels. We consider that efficient management can be achieved by locating and identifying the locations of mallards and their natural enemies using acoustic information that can be widely sensed in a paddy field. For this study, we developed a prototype system that comprises two sets of microphone arrays. We used 64 microphones in all installed on our originally designed and assembled sensor mounts. We obtained three acoustic datasets in an outdoor environment for our benchmark evaluation. The experimentally obtained results demonstrated that the proposed system provides adequate accuracy for application to rice–duck farming.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Erik Verreycken ◽  
Ralph Simon ◽  
Brandt Quirk-Royal ◽  
Walter Daems ◽  
Jesse Barber ◽  
...  

AbstractMicrophone arrays are an essential tool in the field of bioacoustics as they provide a non-intrusive way to study animal vocalizations and monitor their movement and behavior. Microphone arrays can be used for passive localization and tracking of sound sources while analyzing beamforming or spatial filtering of the emitted sound. Studying free roaming animals usually requires setting up equipment over large areas and attaching a tracking device to the animal which may alter their behavior. However, monitoring vocalizing animals through arrays of microphones, spatially distributed over their habitat has the advantage that unrestricted/unmanipulated animals can be observed. Important insights have been achieved through the use of microphone arrays, such as the convergent acoustic field of view in echolocating bats or context-dependent functions of avian duets. Here we show the development and application of large flexible microphone arrays that can be used to localize and track any vocalizing animal and study their bio-acoustic behavior. In a first experiment with hunting pallid bats the acoustic data acquired from a dense array with 64 microphones revealed details of the bats’ echolocation beam in previously unseen resolution. We also demonstrate the flexibility of the proposed microphone array system in a second experiment, where we used a different array architecture allowing to simultaneously localize several species of vocalizing songbirds in a radius of 75 m. Our technology makes it possible to do longer measurement campaigns over larger areas studying changing habitats and providing new insights for habitat conservation. The flexible nature of the technology also makes it possible to create dense microphone arrays that can enhance our understanding in various fields of bioacoustics and can help to tackle the analytics of complex behaviors of vocalizing animals.


2021 ◽  
Vol 182 ◽  
pp. 108278
Author(s):  
Zhigang Chu ◽  
Shijia Yin ◽  
Yang Yang ◽  
Peiran Li

Author(s):  
Daniel T. Jones ◽  
Dushyant Sharma ◽  
Stanislav Yu. Kruchinin ◽  
Patrick A. Naylor

Sign in / Sign up

Export Citation Format

Share Document