Voltage stability index for online voltage stability assessment

Author(s):  
Rabindra Maharjan ◽  
Sukumar Kamalasadan
2015 ◽  
Vol 793 ◽  
pp. 49-53
Author(s):  
Nur Zahirah Mohd Ali ◽  
Ismail Musirin ◽  
H. Mohamad

This paper presents a voltage stability assessment based approach to determine the congested line with optimal sizing and location. FVSI, a voltage stability index is chosen as the indicator for congested line identification, while particle swarm optimization technique (PSO) is used for optimal location and sizing of FACTs devices installation. Congested line is identified by increasing the reactive load at chosen load buses until they reach the maximum loadability level. PSO is applied for identifying the optimal location and sizing of FACTs devices as the compensating device. Results obtained from the implementation on IEEE 30 Bus RTS revealed that the proposed technique can manage the congestion subject to various disturbances.


Author(s):  
LEELA SALIM ◽  
ANISH FRANCIS ◽  
Tibin Joseph

Voltage stability assessment plays a key role in operations of power systems. Neural network based assessment techniques are gaining a lot of attention in this area. In this work, we presents the effects of training parameters on assessment of voltage stability index based on the real field data .The stress on the bus is analyzed on the basis of real and reactive power, and the changes in the index based on contingencies in the system is presented. The work is focused on radial distribution power systems and is based on Kerala grid, India.


2012 ◽  
Vol 61 (2) ◽  
pp. 239-250 ◽  
Author(s):  
M. Kumar ◽  
P. Renuga

Application of UPFC for enhancement of voltage profile and minimization of losses using Fast Voltage Stability Index (FVSI)Transmission line loss minimization in a power system is an important research issue and it can be achieved by means of reactive power compensation. The unscheduled increment of load in a power system has driven the system to experience stressed conditions. This phenomenon has also led to voltage profile depreciation below the acceptable secure limit. The significance and use of Flexible AC Transmission System (FACTS) devices and capacitor placement is in order to alleviate the voltage profile decay problem. The optimal value of compensating devices requires proper optimization technique, able to search the optimal solution with less computational burden. This paper presents a technique to provide simultaneous or individual controls of basic system parameter like transmission voltage, impedance and phase angle, thereby controlling the transmitted power using Unified Power Flow Controller (UPFC) based on Bacterial Foraging (BF) algorithm. Voltage stability level of the system is defined on the Fast Voltage Stability Index (FVSI) of the lines. The IEEE 14-bus system is used as the test system to demonstrate the applicability and efficiency of the proposed system. The test result showed that the location of UPFC improves the voltage profile and also minimize the real power loss.


Author(s):  
Mostafa Elshahed ◽  
Mahmoud Dawod ◽  
Zeinab H. Osman

Integrating Distributed Generation (DG) units into distribution systems can have an impact on the voltage profile, power flow, power losses, and voltage stability. In this paper, a new methodology for DG location and sizing are developed to minimize system losses and maximize voltage stability index (VSI). A proper allocation of DG has to be determined using the fuzzy ranking method to verify best compromised solutions and achieve maximum benefits. Synchronous machines are utilized and its power factor is optimally determined via genetic optimization to inject reactive power to decrease system losses and improve voltage profile and VSI. The Augmented Lagrangian Genetic Algorithm with nonlinear mixed-integer variables and Non-dominated Sorting Genetic Algorithm have been implemented to solve both single/multi-objective function optimization problems. For proposed methodology effectiveness verification, it is tested on 33-bus and 69-bus radial distribution systems then compared with previous works.


Sign in / Sign up

Export Citation Format

Share Document