Fast Voltage Stability Index (FVSI) Based Technique for Congestion Management Assessment

2015 ◽  
Vol 793 ◽  
pp. 49-53
Author(s):  
Nur Zahirah Mohd Ali ◽  
Ismail Musirin ◽  
H. Mohamad

This paper presents a voltage stability assessment based approach to determine the congested line with optimal sizing and location. FVSI, a voltage stability index is chosen as the indicator for congested line identification, while particle swarm optimization technique (PSO) is used for optimal location and sizing of FACTs devices installation. Congested line is identified by increasing the reactive load at chosen load buses until they reach the maximum loadability level. PSO is applied for identifying the optimal location and sizing of FACTs devices as the compensating device. Results obtained from the implementation on IEEE 30 Bus RTS revealed that the proposed technique can manage the congestion subject to various disturbances.

Author(s):  
Zetty Adibah Kamaruzzaman ◽  
Azah Mohamed ◽  
Ramizi Mohamed

The high penetration of photovoltaic (PV) generation can cause many technical issues such as power quality and impact on the power system voltage stability. To improve voltage stability and reducing power loss in a power system with PV generators, appropriate planning of PV generators is considered by optimal placement of PV. Thus, an effective heuristic optimization technique such as the Wind Driven Optimization (WDO) technique is applied for determining optimal location of PV generators in a power system. For determining the optimal location of PV, the objective function considers maximizing the Improved Voltage Stability Index. The proposed method for optimal location of PV generators is implemented on the IEEE 118 and 30 bus transmission systems and the 69-radial distribution system. The optimization results show that integrating PV into the test systems improves voltage stability in the system. Comparing the performance of the WDO with the particle swarm optimization technique, it is shown that the WDO technique gives faster convergence.


Author(s):  
Nur Zahirah Mohd Ali ◽  
Ismail Musirin ◽  
Hasmaini Mohamad

<span>In this paper, a new hybrid optimization technique is proposed namely Adaptive Embedded Clonal Evolutionary Programming (AECEP). This idea comes from the combination part of the clone in an Artificial Immune System (AIS) and then combined with Evolutionary Programming (EP). This technique was implemented to determine the optimal sizing of Flexible AC Transmission Systems (FACTS) devices. This study focused on the ability of Static Var Compensator (SVC) is used for the optimal operation of the power system as well as in reducing congestion in power system. In order to determine the location of SVC, the previous study has been done using pre-developed voltage stability index, Fast Voltage Stability Index (FVSI). Congested lines or buses will be identified based on the highest FVSI value for the purpose of SVC placement. The optimizations were conducted for the SVC sizing under single contingency, where SVC was modeled in steady state analysis. The objective function of this study is to minimize the power loss and improve the voltage profile along with the reduction of congestion with the SVC installation in the system. Validation on the IEEE 30 Bus RTS and IEEE 118 Bus RTS revealed that the proposed technique managed to reduce congestion in power system.</span>


2012 ◽  
Vol 61 (2) ◽  
pp. 239-250 ◽  
Author(s):  
M. Kumar ◽  
P. Renuga

Application of UPFC for enhancement of voltage profile and minimization of losses using Fast Voltage Stability Index (FVSI)Transmission line loss minimization in a power system is an important research issue and it can be achieved by means of reactive power compensation. The unscheduled increment of load in a power system has driven the system to experience stressed conditions. This phenomenon has also led to voltage profile depreciation below the acceptable secure limit. The significance and use of Flexible AC Transmission System (FACTS) devices and capacitor placement is in order to alleviate the voltage profile decay problem. The optimal value of compensating devices requires proper optimization technique, able to search the optimal solution with less computational burden. This paper presents a technique to provide simultaneous or individual controls of basic system parameter like transmission voltage, impedance and phase angle, thereby controlling the transmitted power using Unified Power Flow Controller (UPFC) based on Bacterial Foraging (BF) algorithm. Voltage stability level of the system is defined on the Fast Voltage Stability Index (FVSI) of the lines. The IEEE 14-bus system is used as the test system to demonstrate the applicability and efficiency of the proposed system. The test result showed that the location of UPFC improves the voltage profile and also minimize the real power loss.


2015 ◽  
Vol 4 (1) ◽  
pp. 68-84 ◽  
Author(s):  
B. Venkateswara Rao ◽  
G.V. Nagesh Kumar

Modern electric power utilities are facing many challenges due to increasing power demand but the growth of power generation and transmission has been limited due to limited resources, environmental restrictions and right-of-way problems. These problems can be minimized by installing Flexible Alternating Current Transmission System (FACTS) devices in modern electric utilities to optimize the existing transmission system. Most effective use of the FACTS devices depend on the fact, how these devices are placed in the power system, i.e. the location and size. An optimal location and size of FACTS devices allows controlling its power flows and thus enhances the stability and reliability of the power systems. In this paper, Firefly Algorithm (FA) and BAT Algorithm (BAT) have been applied and compared to determine the optimal location and size of Static VAR Compensator (SVC) in a power system to improve voltage stability subjected to minimize the active power losses, fuel cost, branching loading and voltage deviation. The effectiveness of the proposed algorithms and improvement of power system stability has been demonstrated on IEEE 57 bus system using fast voltage stability index. The results obtained with variation of parameters of Firefly and BAT Algorithms has been studied and compared with Genetic Algorithm. The results are presented and analyzed.


Author(s):  
E. M. Abdallah ◽  
M. I. El Sayed ◽  
M. M. Elgazzar ◽  
Amal A. Hassan

Research on the integration of renewable distributed generators (RDGs) in radial distribution systems (RDS) is increased to satisfy the growing load demand, reducing power losses, enhancing voltage profile, and voltage stability index (VSI) of distribution network. This paper presents the application of a new algorithm called ‘coyote optimization algorithm (COA)’ to obtain the optimal location and size of RDGs in RDS at different power factors. The objectives are minimization of power losses, enhancement of voltage stability index, and reduction total operation cost. A detailed performance analysis is implemented on IEEE 33 bus and IEEE 69 bus to demonstrate the effectiveness of the proposed algorithm. The results are found to be in a very good agreement.


Sign in / Sign up

Export Citation Format

Share Document