Demonstration of all-optical switching with orthogonally-polarized control and signal light

Author(s):  
Seok-Hwan Jeong ◽  
K. Nakatsuhara ◽  
T. Mizumoto ◽  
Byong-Jin Ma ◽  
Y. Nakano
2021 ◽  
Author(s):  
Khoa Dinh Xuan ◽  
Ai Nguyen Van ◽  
Dong Hoang Minh ◽  
Doai Le Van ◽  
Bang Nguyen Huy

Abstract We proposed a model for all-optical switching in a medium consisting of four-level vee-cascade atomic systems excited by coupling, probe, and signal fields. It is shown that, by changing the intensity or the frequency of the signal field, the medium can be actively switched between either electromagnetically induced transparency (EIT) or electromagnetically induced absorption (EIA), which has behavior of all-optical switching. As a result, a cw probe field is switched into square pulses by modulating the intensity or the frequency of the signal light. Furthermore, width of the square probe pulses can be controlled by tuning the switching period of the signal field. Such a tuneable all-optical switching is useful for finding related applications in optic communications and optical storage devices.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Chao Tan ◽  
Binliang Hu ◽  
Shiping Zhan ◽  
Yonghua Hu ◽  
Bin Zhong

We display a theoretical and experimental study of all-optical switching for signal lasers based on the plasma channel induced by the control laser. Using the plasma channel generated in the carbon disulfide (CS2) solution, the signal light can be modulated as some spatial distributions including unchanging, ring-shaped beam, and other intensity profiles. The modulation on the signal light can be conveniently adjusted by changing the control light’s incident intensity distribution. We can infer the dark spot shape in the modulated signal laser through the intensity profile of control laser beam. These results provide the great potential of plasma channel induced by lasers as an all-optical switching for various optoelectronic applications.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Trenten Andrew Smith ◽  
Samuel J Haeuser ◽  
Seth T King ◽  
Eric J Gansen

Zinc oxide (ZnO) is a semiconductor material exhibiting a wide bandgap in the ultraviolet (UV) region. ZnO is a promising material for use in short-wave optoelectronic devices such as all-optical switches (AOSs). Our switch is composed of a polycrystalline ZnO thin film grown by DC sputter deposition and uses a 120ps control pulse tuned to the band edge of the film to modify the transmission of a weaker signal pulse. The signal light is heavily absorbed in the absence of the control pulse, representing an off state of the switch. The control pulse, when incident on the film, resonantly excites electrons to create excitons. This decreases the material’s absorption by filling energy states and screening the built-in electric field of the ZnO. Consequently, more signal light is transmitted by the film, representing an on state.


Sign in / Sign up

Export Citation Format

Share Document