electromagnetically induced transparency
Recently Published Documents


TOTAL DOCUMENTS

2099
(FIVE YEARS 412)

H-INDEX

95
(FIVE YEARS 9)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Zeeshan Ali Safdar Jadoon ◽  
Heung-Ryoul Noh ◽  
Jin-Tae Kim

AbstractIn this study, optical Bloch equations with and without neighboring hyperfine states near the degenerate two-level system (DTLS) in the challenging case of $$^{85}$$ 85 Rb D2 transition, which involves the Doppler broadening effect, are solved. The calculated spectra agree well with the experimental results obtained based on the coupling-probe scheme with orthogonal linear polarizations of the coupling and probe fields. The mechanisms of electromagnetically induced absorption (electromagnetically induced transparency) for the open $$F_g=3 \rightarrow F_e=2$$ F g = 3 → F e = 2 and 3 transitions (open $$F_g=2 \rightarrow F_e=2$$ F g = 2 → F e = 2 and 3 transitions) are determined to be the effect of the strong closed $$F_g=3 \rightarrow F_e=4$$ F g = 3 → F e = 4 transition line (strong closed $$F_g=2 \rightarrow F_e=1$$ F g = 2 → F e = 1 transition line); this finding is based on a comparison between the calculated absorption profiles of the DTLS without neighboring states and those of all levels with neighboring states, depending on the coupling and probe power ratios. Furthermore, based on the aforementioned comparison, the crucial factors that enhance or reduce the coherence effects and lead to the transformation between electromagnetically induced absorption and electromagnetically induced transparency, are (1) the power ratios between the coupling and probe beams, (2) the openness of the excited state, and (3) effects of the neighboring states due to Doppler broadening in a real atomic system.


2021 ◽  
Author(s):  
Xu Zi-Shan ◽  
Wang Han-Mu ◽  
Ba Zeng-Li ◽  
Liu Hong-Ping

Abstract We have studied the transient response dynamics of 87Rb atomic vapor buffered in 8 Torr Ne gas through an electromagnetically induced transparency configured in Λ-scheme. Experimentally, the temporal transmission spectra versus probe detuning by switching on and off the coupling one show complex structures. The transmitted probe light intensity drops to a minimum value when the coupling light turns off, showing a strong absorption. While at the moment of turning on the coupling light at a subsequent delayed time, the atomic medium shows a fast transient response. To account for the transient switching feature, in the time-dependent optical Bloch equation, we have to take the transverse relaxation dephasing process of atomic vapor into account, as well as the fluorescence relaxation along with the optical absorption. This work supplies a technique to quantify the transverse relaxation time scale and sensitively monitor its variation along the environment by observing the transient dynamics of coherent medium, which is helpful in characterizing the coherent feature of the atomic medium.


2021 ◽  
Author(s):  
Hao Hsu ◽  
Chin-Yao Cheng ◽  
Jiun-Shiuan Shiu ◽  
Ling-Chun Chen ◽  
Yong-Fan Chen

Sign in / Sign up

Export Citation Format

Share Document