Advances in Condensed Matter Physics
Latest Publications


TOTAL DOCUMENTS

692
(FIVE YEARS 87)

H-INDEX

23
(FIVE YEARS 5)

Published By Hindawi Limited

1687-8124, 1687-8108

2022 ◽  
Vol 2022 ◽  
pp. 1-6
Author(s):  
Chang-Youn Moon ◽  
Kee-Suk Hong ◽  
Yong-Sung Kim

We investigate defect properties in hexagonal boron nitride (hBN) which is attracting much attention as a single photon emitter. Using first-principles calculations, we find that nitrogen-vacancy defect V N has a lower energy structure in C 1 h symmetry in 1− charge state than the previously known D 3 h symmetry structure. Noting that carbon has one more valence electron than boron species, our finding naturally points to the correspondence between V N and V N C B defects with one charge state difference between them, which is indeed confirmed by the similarity of atomic symmetries, density of states, and excitation energies. Since V N C B is considered as a promising candidate for the source of single photon emission, our study suggests V N as another important candidate worth attention, with its simpler form without the incorporation of foreign elements into the host material.


2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Yilun Gu ◽  
Rufei Zhang ◽  
Haojie Zhang ◽  
Licheng Fu ◽  
Guoxiang Zhi ◽  
...  

A new diluted magnetic semiconductor (Sr, Na)(Zn, Mn)2Sb2 has been successfully synthesized by doping Na and Mn into the parent compound SrZn 2 Sb 2 , which has a CaAl 2 Si 2 -type crystal structure (space group P 3 ¯ m 1 , No. 164, h P 5 ) isostructural to the 122-type iron-based superconductor CaFe 2 As 2 . No magnetic ordering has been observed when only spins are doped by (Zn, Mn) substitution. Only with carriers codoped by (Sr, Na) substitution, a ferromagnetic ordering occurs below the maximum Curie temperature T C ∼9.5 K. Comparing with other CaAl 2 Si 2 -type diluted magnetic semiconductors, we will show that negative chemical pressure suppresses the Curie temperature.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yunmi Huang ◽  
Haijun Luo ◽  
Changkun Dong

Based on the density functional theory, the adsorption and decomposition of NOx (x = 1, 2) on Mo (110) surface are studied with first-principles calculations. Results show that the stable structures of NO2/Mo (110) are MoNO2 (T, μ1-N), MoNO2 (H, μ3-N, O, O′), MoNO2 (S, η2-O, O′), and MoNO2 (L, η2-O, O′). The corresponding adsorption energies for the structures are −3.83 eV, −3.40 eV, −2.81 eV, and −2.60 eV, respectively. Besides, the stable structures of NO/Mo (110) are MoNO (H, μ1-N), MoNO (H, μ2-N, O), and MoNO (H, η1-N) with the corresponding adsorption energies of −3.75 eV, −3.57 eV, and −3.01 eV, respectively. N and O atoms are easily adsorbed at the hollow sites on Mo (110) surfaces, and their adsorption energies reach −7.02 eV and −7.70 eV, respectively. The preferable decomposition process of MoNO2 (H, μ3-N, O, O′) shows that the first and second deoxidation processes need to overcome energy barriers of 0.11 eV and 0.64 eV, respectively. All these findings indicate that NO2 is relatively easy to dissociate on Mo (110) surface.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Abel Mukubwa ◽  
John Wanjala Makokha

A Bose-Einstein condensate (BEC) of a nonzero momentum Cooper pair constitutes a composite boson or simply a boson. We demonstrated that the quantum coherence of the two-component BEC (boson and fermion condensates) is controlled by plasmons. It has been proposed that plasmons, observed in both electron-doped and hole-doped cuprates, originates from the long-range Coulomb screening, where the transfer momentum q ⟶ 0 . We further show that the screening mediates boson-fermion pairing at condensate state. While only about 1 % of plasmon energy mediates the charge pairing, most of the plasmon energy is used to overcome the modes that compete against superconductivity such as phonons, charge density waves, antiferromagnetism, and damping effects. Additionally, the dependence of frequency of plasmons on the material of a superconductor is also explored. This study gives a quantum explanation of the modes that enhance and those that inhibit superconductivity. The study informs the nature of electromagnetic radiations (EMR) that can enhance the critical temperature of such materials.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xinmao Qin ◽  
Wanjun Yan ◽  
Dongxiang Li ◽  
Zhongzheng Zhang ◽  
Shaobo Chen

A first-principles study was performed to investigate the adsorption properties of gas molecules (CO, CO2, NO, and NO2) on carbon- (C-), nitrogen- (N-), and oxygen-doped (O) borophene. The adsorption energies, adsorption configurations, Mulliken charge population, surface work functions, and density of states (DOS) of the most stable doped borophene/gas-molecule configurations were calculated, and the interaction mechanisms between the gas molecules and the doped borophene were further analyzed. The results indicated that most of the gas molecules exhibited strong chemisorption at the VB site (the center of valley bottom B–B bond) of the doped borophene (compared to pristine borophene). Electronic property analysis of the C-doped borophene/CO2 and the NO2 adsorption system revealed that there were numerous charge transfers from the C-doped borophene to the CO2 and NO2 molecules. This indicated that C-doped borophene was an electron donor, and the CO2 and NO2 molecules served as electron acceptors. In contrast to variations in the adsorption energies, electronic properties, and surface work functions of the different gas, C-, N-, and O-doped borophene adsorption systems, we concluded that the C-, N-, and O-doped borophene materials will improve the sensitivity of CO, CO2, and NO2 molecule; this improvement of adsorption properties indicated that C-, N-, and O-doped borophene materials are excellent candidates for surface work functions transistor to detect gas molecules.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Hui Guo ◽  
Chunqing Huo ◽  
Liang Yang ◽  
Shiwei Lin

Graphitic carbon nitride (g-C3N4) nanotubes are recently gaining increasing interest due to their extraordinary physicochemical properties. In the following, we report on simulations using a method of nonequilibrium molecular dynamics and focus on the thermal conductivity variation of g-C3N4 nanotubes with respect to different temperatures, diameters, and chiral angles. In spite of the variation of diameters and chiral angles, the structure of nanotubes possesses high stability in the temperature range from 200 K to 600 K. Although there is little change of the thermal conductivity per unit arc length for nanotubes with the same diameter at different temperatures, it decreases significantly with increasing diameters at the same temperature. The thermal conductivity at different chiral angles has little to do with how temperature changes. Simulation results show that the vibrational density of states of nanotubes distributed, respectively, at ∼11 THz and ∼32 THz, indicating that heat in nanotubes is mostly carried by phonons with frequencies lower than 10 THz.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ahemedin Abedea Ajaybu ◽  
Sintayehu Mekonnen Hailemariam

We performed spin-polarized density functional theory (DFT) to investigate the structural, electronic, and magnetic properties of silicon- (Si-) doped monolayer boron nitride (BN). The present study revealed that structural parameters like bond length, bond angle, and lattice parameters increase as Si-doped in the B site of monolayer BN. However, the bandgap of monolayer BN is reduced in the presence of the Si dopant. Moreover, the obtained magnetic moment and analysis of the total density of states (TDOS) show that Si-doped monolayer BN displays ferromagnetism. The calculated ferromagnetic transition temperature (Tc) value for Si concentration of 12.5% is 476 K which exceeds room temperature. The findings are avenues to enhance the application of monolayer BN for spintronics.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ece Kutlu-Narin ◽  
Polat Narin ◽  
Sefer Bora Lisesivdin ◽  
Beyza Sarikavak-Lisesivdin

This study focuses on the growth and physical properties of ZnO thin films on different substrates grown by mist-CVD enhanced with ozone (O3) gas produced by corona discharge plasma using O2. Here, O3 is used to eliminate the defects related to oxygen in ZnO thin films. ZnO thin films are grown on amorphous soda-lime glass (SLG) and single crystals SiO2/Si (100) and c-plane Al2O3 substrates at 350°C of low growth temperature. All ZnO thin films show dominant (0002) diffraction peaks from X-ray diffraction (XRD). As expected, full width at half maximum (FWHM) of (0002) is decreasing in ZnO thin films on single-crystal substrates, especially c-Al2O3 due to similar crystal structure. It is found that the strain in the films is lowest in ZnO/c-Al2O3. The surface morphologies of the thin films are studied with atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurements. Grown ZnO films have a hexagonal and triangular nanostructure with different nanostructure sizes depending on the used substrate types. The calculated surface roughness is dramatically decreased in ZnO/c-Al2O3 compared to the other grown structures. The confocal Raman measurements show the E2(H) peak of ZnO thin films at 437 cm−1. It is suggested that O3 gas produced by corona discharge plasma using O2 can be useful to obtain better crystal quality and physical properties in ZnO thin films.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Can Ding ◽  
Zhenjiang Gao ◽  
Xing Hu ◽  
Zhao Yuan

The contact is the core element of the vacuum interrupter of the mechanical DC circuit breaker. The electrical conductivity and welding resistance of the material directly affect its stability and reliability. AgSnO2 contact material has low resistivity, welding resistance, and so on. This material occupies an important position of the circuit breaker contact material. This research is based on the first-principles analysis method of density functional theory. The article calculated the lattice constant, enthalpy change, energy band, electronic density of state, charge density distribution, population, and conductivity of Ce, C single-doped, and Ce-C codoped SnO2 systems. The results show that Ce, C single doping, and Ce-C codoping all increase the cell volume and lattice constant. When the elements are codoped, the enthalpy change is the largest, and the thermal stability is the best. It has the smallest bandgap, the most impurity energy levels, and the least energy required for electronic transitions. The 4f orbital electrons of the Ce atom and the 2p orbital electrons of C are the sources of impurity energy near the Fermi level. When the elements are codoped, more impurity energy levels are generated at the bottom of the conduction band and the top of the valence band. Its bandgap is reduced so conductivity is improved. From the charge density and population analysis, the number of free electrons of Ce atoms and C atoms is redistributed after codoping. It forms a Ce-C covalent bond to further increase the degree of commonality of electrons and enhance the metallicity. The conductivity analysis shows that both single-doped and codoped conductivity have been improved. When the elements are codoped, the conductivity is the largest, and the conductivity is the best.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Saeideh Ramezani Akbarabadi ◽  
Mojtaba Madadi Asl

The thermoelectric properties of zigzag graphene nanoribbons (ZGNRs) are sensitive to chemical modification. In this study, we employed density functional theory (DFT) combined with the nonequilibrium green’s function (NEGF) formalism to investigate the thermoelectric properties of a ZGNR system by impurity substitution of single and double nitrogen (N) atoms into the edge of the nanoribbon. N-doping changes the electronic transmission probability near the Fermi energy and suppresses the phononic transmission. This results in a modified electrical conductance, thermal conductance, and thermopower. Ultimately, simultaneous increase of the thermopower and suppression of the electron and phonon contributions to the thermal conductance leads to the significant enhancement of the figure of merit in the perturbed (i.e., doped) system compared to the unperturbed (i.e., nondoped) system. Increasing the number of dopants not only changes the nature of transport and the sign of thermopower but also further suppresses the electron and phonon contributions to the thermal conductance, resulting in an enhanced thermoelectric figure of merit. Our results may be relevant for the development of ZGNR devices with enhanced thermoelectric efficiency.


Sign in / Sign up

Export Citation Format

Share Document