control laser
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 1)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Behzad Sangshekan ◽  
Mostafa Sahrai ◽  
Seyyed Hossein Asadpour ◽  
Jafar Poursamad Bonab

AbstractA five-level atomic system is proposed in vicinity of a two-dimensional (2D) plasmonic nanostructure with application in atom-photon entanglement. The behavior of the atom-photon entanglement is discussed with and without a control laser field. The amount of atom-photon entanglement is controlled by the quantum interference created by the plasmonic nanostructure. Thus, the degree of atom-photon entanglement is affected by the atomic distance from the plasmonic nanostructure. In the presence of a control field, maximum entanglement between the atom and its spontaneous emission field is observed.


2021 ◽  
Author(s):  
Behzad Sangshekan ◽  
Mostafa Sahrai ◽  
Seyyed Hossein Asadpour ◽  
Jafar Poursamad Bonab

Abstract A five-level atomic system is proposed in vicinity of a two-dimensional (2D) plasmonic nanostructure with application in atom-photon entanglement. The behavior of the atom-photon entanglement is discussed with and without a control laser field. The amount of atom-photon entanglement is controlled by the quantum interference created by the plasmonic nanostructure. Thus, the degree of atom-photon entanglement is affected by the atomic distance from the plasmonic nanostructure. In the presence of a control field, maximum entanglement between the atom and its spontaneous emission field is observed.


2021 ◽  
Author(s):  
Do Hyung Kang ◽  
Jinwoo Kim ◽  
Heung-Ryoul Noh ◽  
Sang Kyu kim

Abstract The ponderomotive effect in the non-valence bound states has been experimentally demonstrated for the first time, giving the great promise for the manipulation of the polyatomic molecules by the dynamic Stark effect. Entire quantum levels of the dipole-bound state (DBS) and quadruple-bound state (QBS) of the phenoxide (or 4-bromophenoxide) and 4-cyanophenoxide anions, respectively, show the clear-cut ponderomotive blue-shifts in the presence of the spatiotemporally overlapped non-resonant picosecond control laser pulse. The quasi-free electron in the QBS is found to be more vulnerable to the external oscillating electromagnetic field compared to that in the DBS, suggesting that the non-valence orbital of the former is more diffusive and thus more polarizable compared to that of the latter.


2021 ◽  
Author(s):  
Do Hyung Kang ◽  
Jinwoo Kim ◽  
Heung-Ryoul Noh ◽  
Sang Kyu Kim

The ponderomotive effect in the non-valence bound states has been experimentally demonstrated for the first time, giving the great promise for the manipulation of the polyatomic molecules by the dynamic Stark effect. Entire quantum levels of the dipole-bound state (DBS) and quadruple-bound state (QBS) of the phenoxide (or 4-bromophenoxide) and 4-cyanophenoxide anions, respectively, show the clear-cut ponderomotive blue-shifts in the presence of the spatiotemporally overlapped non-resonant picosecond control laser pulse. The quasi-free electron in the QBS is found to be more vulnerable to the external oscillating electromagnetic field compared to that in the DBS, suggesting that the non-valence orbital of the former is more diffusive and thus more polarizable compared to that of the latter.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chong Shou ◽  
Guoxiang Huang

We propose a scheme to realize the storage and retrieval of optical Peregrine solitons in a coherent atomic gas via electromagnetically induced transparency (EIT). We show that optical Peregrine solitons with very small propagation loss, ultraslow motional velocity, and extremely low generation power can be created in the system via EIT. We also show that such solitons can be stored, retrieved, split, and routed with high efficiency and fidelity through the manipulation of control laser fields. The results reported here are useful for the active control of optical Peregrine solitons and promising for applications in optical information processing and transmission.


2021 ◽  
Vol 67 (2 Mar-Apr) ◽  
pp. 180
Author(s):  
N. Shirkhaghah ◽  
M. Saadati-Niari ◽  
B. Nedaee-Shakarab

We show that the technique of Stark-chirped rapid adiabatic passage (SCRAP), can be implemented in tripod quantum systems. We propose a scheme for coherent superposition among two ground states via Stark-shiftchirped rapid adiabatic passage technique in a tripod system. Tripod-SCRAP uses four laser pulses: an intense far-off-resonance Stark laser pulse modifies the transition frequency between the states by Stark shifting their energies and three nearly resonant pump, Stokes, and control laser pulses that fractionally transfer the population between the ground states via adiabatic passage. In our scheme, the pulse duration of the pump pulse must be larger than the pulse duration of the Stokes and control pulses, although with a smaller amplitude, and the atom encounters with the pump, Stokes, control, and Stark laser pulses with counterintuitive order (Stokes pulse arrives before the rest of the pulses). This technique can be applied to one-photon as well as multiphoton transitions and it is not necessary to vanish the pulses (pump and Stokes) simultaneously and it is a powerful alternative tool for f-STIRAP and tripod-STIRAP techniques at least when inhomogeneous broadenings are included. inhomogeneous broadening. This technique is robust against moderate variations in the intensities of the laser pulses,in detunings, and in delays between the pulses.


2021 ◽  
Vol 42 (5) ◽  
pp. 830-838
Author(s):  
HE Wei ◽  
◽  
◽  
TAN Yuguang ◽  
ZHANG Yizhou ◽  
...  

Author(s):  
Wolfgang Gregor Hollik ◽  
Matthias Linster ◽  
Mustafa Tabet

Abstract Searches for New Physics focus either on the direct production of new particles at colliders or at deviations from known observables at low energies. In order to discover New Physics in precision measurements, both experimental and theoretical uncertainties must be under full control. Laser spectroscopy nowadays offers a tool to measure transition frequencies very precisely. For certain molecular and atomic transitions the experimental technique permits a clean study of possible deviations. Theoretical progress in recent years allows us to compare ab initio calculations with experimental data. We study the impact of a variety of New Physics scenarios on these observables and derive novel constraints on many popular generic Standard Model extensions. As a result, we find that molecular spectroscopy is not competitive with atomic spectroscopy and neutron scattering to probe new electron-nucleus and nucleus-nucleus interactions, respectively. Molecular and atomic spectroscopy give similar bounds on new electron-electron couplings, for which, however, stronger bounds can be derived from the magnetic moment of the electron. In most of the parameter space H$$_2$$2 molecules give stronger constraints than T$$_2$$2 or other isotopologues.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A58-A59
Author(s):  
S Kaur ◽  
R C Thomas ◽  
C B Saper

Abstract Introduction Serotoninergic dorsal raphe neurons (DRSert) are CO2 responsive, and mice lacking serotonin have impaired arousal to CO2. We showed that the neurons in external lateral parabrachial nucleus containing calcitonin gene related peptide (PBelCGRP), are required for CO2-arousal. PBelCGRP neurons also receive serotoninergic innervation from the DRSert. 5HT2A agonist restores CO2 responsiveness in mice lacking serotonin, suggesting that DRSert may modulate CO2 arousal by acting on 5HT2A receptors possibly on the PBel neurons. Methods We used serotonin transporter (Sert)-Cre mice to optogenetically inhibit DRSert neurons and their terminals in the PBel. We injected AAV-FLEX-ArchT into the DR and implanted an optical fiber just above it in one set of Sert-Cre mice and bilaterally in the PBel in another set. All mice were instrumented for sleep and optogenetics and were tested for EEG arousals to 10% CO2. Latencies of arousal were compared with optogenetic inhibition of either the DR neurons or their terminals in the PBel with a 593nm laser light. We further tested whether a 5HT2A agonist (TCB-2) can reverse blockade of CO2 arousal in mice where DRSert terminals in PBel were inhibited. Finally, TCB-2 was injected in mice with PBelCGRP deletions and arousal latency to CO2 was compared. Results Compared to the control (Laser-OFF) condition, arousal latency to CO2 was significantly increased by photoinhibition of either the DRSert neurons (n=6; latency- 40.9 ± 6.4 vs. 13.81± 0.69 sec; F3, 17= 11.5; P< 0.001) or their terminals in PBel (n=8; latency-34.9 ± 2.3 sec vs. 16.62 ± 0.97sec, F1, 14= 56.9; P< 0.001). This was reversed by the 5HT2A agonist TCB-2 (5mg/kg), as it reduced the latency to CO2 arousal in mice with photoinhibition of terminals in PBel from 35.48 ± 7.31 sec to 16.24 ± 1.06 sec (F3, 9= 8.05; P= 0.006), but had no effect in mice with PBelCGRP neurons deletions. Conclusion The serotonin system modulate CO2-arousals by the DRSert input to the PBel. TCB-2 reversed the effect of inhibition of DRSert terminals in the PBel, but not in mice with PBelCGRP deletions, suggests that DRSert modulate PBelCGRP neurons through 5HT2a receptors. Support NIH- 2P01 HL095491 and NS112175


Sign in / Sign up

Export Citation Format

Share Document