An analytical method considering bursty traffic for data transfer in high-speed networks

Author(s):  
Keijiro Murakami ◽  
Ken-ichi Baba ◽  
Takafumi Moriguchi
Author(s):  
Esma Yildirim ◽  
Tevfik Kosar

The emerging petascale increase in the data produced by large-scale scientific applications necessitates innovative solutions for efficient transfer of data through the advanced infrastructure provided by today’s high-speed networks and complex computer-architectures (e.g. supercomputers, parallel storage systems). Although the current optical networking technology reached transport speeds of 100Gbps, the applications still suffer from the inadequate transport protocols and end-system bottlenecks such as processor speed, disk I/O speed and network interface card limits that cause underutilization of the existing network infrastructure and let the application achieve only a small portion of the theoretical performance. Fortunately, with the parallelism provided by usage of multiple CPUs/nodes and multiple disks present in today’s systems, these bottlenecks could be eliminated. However it is necessary to understand the characteristics of the end-systems and the transport protocol used. In this book chapter, we analyze methodologies that will improve the data transfer speed of applications and provide maximal speeds that could be obtained from the available end-system resources and high-speed networks through usage of end-to-end dataflow parallelism.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Sicong Wang ◽  
Chen Wei ◽  
Yuanhua Feng ◽  
Hongkun Cao ◽  
Wenzhe Li ◽  
...  

AbstractAlthough photonics presents the fastest and most energy-efficient method of data transfer, magnetism still offers the cheapest and most natural way to store data. The ultrafast and energy-efficient optical control of magnetism is presently a missing technological link that prevents us from reaching the next evolution in information processing. The discovery of all-optical magnetization reversal in GdFeCo with the help of 100 fs laser pulses has further aroused intense interest in this compelling problem. Although the applicability of this approach to high-speed data processing depends vitally on the maximum repetition rate of the switching, the latter remains virtually unknown. Here we experimentally unveil the ultimate frequency of repetitive all-optical magnetization reversal through time-resolved studies of the dual-shot magnetization dynamics in Gd27Fe63.87Co9.13. Varying the intensities of the shots and the shot-to-shot separation, we reveal the conditions for ultrafast writing and the fastest possible restoration of magnetic bits. It is shown that although magnetic writing launched by the first shot is completed after 100 ps, a reliable rewriting of the bit by the second shot requires separating the shots by at least 300 ps. Using two shots partially overlapping in space and minimally separated by 300 ps, we demonstrate an approach for GHz magnetic writing that can be scaled down to sizes below the diffraction limit.


2021 ◽  
pp. 1-1
Author(s):  
Boyu Zhang ◽  
Yu-E Sun ◽  
Yang Du ◽  
He Huang ◽  
Guoju Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document