Power management strategy for a multi-hybrid fuel cell/energy storage power generation systems

Author(s):  
A. Ghazanfari ◽  
M. Hamzeh ◽  
H. Mokhtari
Author(s):  
Qishen Zhao ◽  
Tianheng Feng ◽  
Dongmei Chen ◽  
Wei Li

Abstract Electrification of locomotive with hybridized fuel-cell, battery and supercapacitor has drawn much attention from both the academia and industry. Unlike traditional powertrain, hybrid powertrain consists of multiple power sources with a complex drivetrain structure, various efficiency performance, and different dynamics. Therefore, it is necessary to develop a power management strategy to make sure each power source operates under a quasi-optimal condition and maximize the overall powertrain efficiency. This paper presents the development of a power management framework for a novel hybrid locomotive consisting of PEM fuel cell, battery, and supercapacitor. Both the equivalent consumption management strategy (ECMS) and the stochastic dynamic programming (SDP) are applied to solve for the optimal power split strategy. The resulted power management strategy is presented in the form of policy maps, which makes it convenient for real-time in-vehicle implementations. Simulation results indicate that the SDP demonstrates advantages over the ECMS in terms of equivalent hydrogen consumption over typical locomotive driving cycles.


Author(s):  
Marek Michalczuk ◽  
Bartlomiej Ufnalski ◽  
Lech M. Grzesiak

Purpose – The purpose of this paper is to provide high-efficiency and high-power hybrid energy source for an urban electric vehicle. A power management strategy based on fuzzy logic has been introduced for battery-ultracapacitor (UC) energy storage. Design/methodology/approach – The paper describes the design and construction of on-board hybrid source. The proposed energy storage system consists of battery, UCs and two DC/DC interleaved converters interfacing both storages. A fuzzy-logic controller (FLC) for the hybrid energy source is developed and discussed. Control structure has been tested using a non-mobile experimental setup. Findings – The hybrid energy storage ensures high-power ability. Flexibility and robustness offered by the FLC give an easy accessible method to provide a power management algorithm extended with additional input information from road infrastructure or other vehicles. In the presented research, it was examined that using information related to the topography of the road in the control structure helps to improve hybrid storage performance. Research limitations/implications – The proposed control algorithm is about to be validated also in an experimental car. Originality/value – Exploratory studies have been provided to investigate the benefits of energy storage hybridization for electric vehicle. Simulation and experimental results confirm that the combination of lithium batteries and UCs improves performance and reliability of the energy source. To reduce power impulses drawn from the battery, power management algorithm takes into consideration information on slope of a terrain.


Sign in / Sign up

Export Citation Format

Share Document