scholarly journals Control and derating of a PV inverter for harmonic compensation in a smart distribution system

Author(s):  
Grazia Todeschini
Author(s):  
Ashutosh Srivastava ◽  
Amarjeet Singh

Harmonics in the power system is not new issue. This phenomenon has been introduced by technocrat throughout in the history of electrical power system. Maintaining the power quality in a power system is an essential assignment due to increase in wide variety of non-linear loads. The current drawn by such non linear loads are non-sinusoidal and therefore contains harmonics. Therefore, it becomes necessary to compensate these unwanted harmonics for better performance of the system. In this paper, a review of compensations of harmonics in distribution system has been explained.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5942
Author(s):  
Yu-Jen Liu ◽  
Yu-Hsuan Tai ◽  
Yih-Der Lee ◽  
Jheng-Lung Jiang ◽  
Chen-Wei Lin

PV hosting capacity (PVHC) analysis on a distribution system is an attractive technique that emerged in recent years for dealing with the planning tasks on high-penetration PV integration. PVHC uses various system performance indices as judgements to find an available amount of PV installation capacity that can be accommodated on existing distribution system infrastructure without causing any violation. Generally, approaches for PVHC assessments are implemented by iterative power flow calculations with stochastic PV deployments so as to observe the operation impacts for PV installation on distribution systems. Determination of the stochastic PV deployments in most of traditional PVHC analysis methods is automatically carried out by the program that is using random selection. However, a repetitive problem that exists in these traditional methods on the selection of the same PV deployment for a calculation was not previously investigated or discussed; further, underestimation of PVHC results may occur. To assess PVHC more effectively, this paper proposes an improved stochastic analysis method that introduces an innovative idea of using repetitiveness check mechanism to overcome the shortcomings of the traditional methods. The proposed mechanism firstly obtains all PV deployment combinations for the determination of all possible PV installation locations. A quick-sorting algorithm is then used to remove repetitive PV deployments that are randomly selected during the solution procedure. Finally, MATLAB and OpenDSS co-simulations implemented on a small distribution feeder are used to validate the performance of the proposed method; in addition, PVHC enhancement by PV inverter control is investigated and simulated in this paper as well. Results show that the proposed method is more effective than traditional methods in PVHC assessments.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4325
Author(s):  
Jiaqi Gu ◽  
Fei Mei ◽  
Jixiang Lu ◽  
Jinjun Lu ◽  
Jingcheng Chen ◽  
...  

The safety and stability of a distribution network will be affected by high photovoltaic (PV) penetration. Therefore, it is of great significance to evaluate the PV accommodation capacity of a distribution network and to select an appropriate PV accommodation scheme. This paper assesses the PV accommodation capacity of a distribution network with an improved algorithm and optimizes the accommodation scheme with a comprehensive index. First, the PSO (particle swarm optimization)–Monte Carlo algorithm is used to evaluate the maximum accommodation capacity of a distribution network with PV integration. Second, a year-round voltage timing simulation is performed to analyze the node voltage that exceeds the limit under the planned PV capacity, which is higher than the previously evaluated maximum accommodation capacity. Finally, the staged control strategy of the PV inverter and energy storage is carried out to select the scheme for the sizing and siting of energy storage. The simulation tests use a 10 kV standard distribution network as an example for PV evaluation and PV accommodation scheme selection to verify the feasibility and effectiveness of the proposed model.


2019 ◽  
Vol 13 (9) ◽  
pp. 1587-1594 ◽  
Author(s):  
Priyanka Mishra ◽  
Ashok Kumar Pradhan ◽  
Prabodh Bajpai

Sign in / Sign up

Export Citation Format

Share Document