Harmonic compensation as ancillary service in PV inverter based residential distribution system

Author(s):  
M. Abinaya ◽  
N. Senthilnathan ◽  
M. Sabarimuthu
2021 ◽  
Vol 12 (4) ◽  
pp. 218
Author(s):  
Mohammad A. Obeidat ◽  
Abdulaziz Almutairi ◽  
Saeed Alyami ◽  
Ruia Dahoud ◽  
Ayman M. Mansour ◽  
...  

In recent years, air pollution and climate change issues have pushed people worldwide to switch to using electric vehicles (EVs) instead of gas-driven vehicles. Unfortunately, most distribution system facilities are neither designed nor well prepared to accommodate these new types of loads, which are characterized by random and uncertain behavior. Therefore, this paper provides a comprehensive investigation of EVs’ effect on a realistic distribution system. It provides a technical evaluation and analysis of a real distribution system’s load and voltage drop in the presence of EVs under different charging strategies. In addition, this investigation presents a new methodology for managing EV loads under a dynamic response strategy in response to the distribution system’s critical hours. The proposed methodology is applied to a real distribution network, using the Monte Carlo method and the CYME program. Random driver behavior is taken into account in addition to various factors that affect EV load parameters. Overall, the results show that the distribution system is significantly affected by the addition of EV charging loads, which create a severe risk to feeder limits and voltage drop. However, a significant reduction in the impact of EVs can be achieved if a proper dynamic demand response programme is implemented. We hope that the outcomes of this investigation will provide decision-makers and planners with prior knowledge about the expected impact of using EVs and, consequently, enable them to take the proper actions needed to manage such load.


Author(s):  
Ashutosh Srivastava ◽  
Amarjeet Singh

Harmonics in the power system is not new issue. This phenomenon has been introduced by technocrat throughout in the history of electrical power system. Maintaining the power quality in a power system is an essential assignment due to increase in wide variety of non-linear loads. The current drawn by such non linear loads are non-sinusoidal and therefore contains harmonics. Therefore, it becomes necessary to compensate these unwanted harmonics for better performance of the system. In this paper, a review of compensations of harmonics in distribution system has been explained.


Author(s):  
Jayababu Badugu ◽  
Y.P. Obulesu ◽  
Ch. Sai Babu

Electric Vehicles (EVs) are becoming a viable transportation option because they are environmentally friendly and provide solutions to high oil prices. This paper investigates the impacts of electric vehicles on harmonic distortions in urban radial residential distribution systems. The accomplishment of EV innovation relies on the accessibility of EV charging stations. To meet the power demand of growing EVs, utilities are introducing EV charging stations in private and public areas; this led to a change in the residential distribution system infrastructure. In this paper, an urban radial residential distribution system with the integration of an electric vehicle charging facility is considered for investigation. An impact of different EV penetration levels on voltage distortion is analysed. Different penetration levels of EVs into the residential distribution system are considered. Simulation results are presented to validate the work carried out in this paper. An attempt has been made to establish the relationship between the level of penetration of the EVs and voltage distortion in terms of THD (Total Harmonic Distortion)


Sign in / Sign up

Export Citation Format

Share Document