Image feature points matching via improved ORB

Author(s):  
Yanyan Qin ◽  
Hongke Xu ◽  
Huiru Chen
Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1839
Author(s):  
Yutong Zhang ◽  
Jianmei Song ◽  
Yan Ding ◽  
Yating Yuan ◽  
Hua-Liang Wei

Fisheye images with a far larger Field of View (FOV) have severe radial distortion, with the result that the associated image feature matching process cannot achieve the best performance if the traditional feature descriptors are used. To address this challenge, this paper reports a novel distorted Binary Robust Independent Elementary Feature (BRIEF) descriptor for fisheye images based on a spherical perspective model. Firstly, the 3D gray centroid of feature points is designed, and the position and direction of the feature points on the spherical image are described by a constructed feature point attitude matrix. Then, based on the attitude matrix of feature points, the coordinate mapping relationship between the BRIEF descriptor template and the fisheye image is established to realize the computation associated with the distorted BRIEF descriptor. Four experiments are provided to test and verify the invariance and matching performance of the proposed descriptor for a fisheye image. The experimental results show that the proposed descriptor works well for distortion invariance and can significantly improve the matching performance in fisheye images.


2011 ◽  
Vol 383-390 ◽  
pp. 5193-5199 ◽  
Author(s):  
Jian Ying Yuan ◽  
Xian Yong Liu ◽  
Zhi Qiang Qiu

In optical measuring system with a handheld digital camera, image points matching is very important for 3-dimensional(3D) reconstruction. The traditional matching algorithms are usually based on epipolar geometry or multi-base lines. Mistaken matching points can not be eliminated by epipolar geometry and many matching points will be lost by multi-base lines. In this paper, a robust algorithm is presented to eliminate mistaken matching feature points in the process of 3D reconstruction from multiple images. The algorithm include three steps: (1) pre-matching the feature points using constraints of epipolar geometry and image topological structure firstly; (2) eliminating the mistaken matching points by the principle of triangulation in multi-images; (3) refining camera external parameters by bundle adjustment. After the external parameters of every image refined, repeat step (1) to step (3) until all the feature points been matched. Comparative experiments with real image data have shown that mistaken matching feature points can be effectively eliminated, and nearly no matching points have been lost, which have a better performance than traditonal matching algorithms do.


2014 ◽  
Vol 519-520 ◽  
pp. 577-580
Author(s):  
Shuai Yuan ◽  
Guo Yun Zhang ◽  
Jian Hui Wu ◽  
Long Yuan Guo

Fingerprint image feature extraction is a critical step to fingerprint recognition system, which studies topological structure, mathematical model and extraction algorithm of fingerprint feature. This paper presents system design and realization of feature extraction algorithm for fingerprint image. On the basis of fingerprint skeleton image, feature points including ending points, bifurcation points and singular points are extracted at first. Then false feature points are detected and eliminated by the violent changes of ambient orientation field. True feature points are marked at last. Test result shows that the method presented has good accuracy, quick speed and strong robustness for realtime application.


2005 ◽  
Vol 1 (1) ◽  
pp. 69-71 ◽  
Author(s):  
Hao Zhang ◽  
Zhan-hua Huang ◽  
Dao-ying Yu

Sign in / Sign up

Export Citation Format

Share Document