Neptune: An efficient time dependent 3D simulations of coherent radiation sources

Author(s):  
M. Botton ◽  
T. M. Antonsen ◽  
S. J. Cooke ◽  
B. Levush ◽  
I. A. Chernyavskiy ◽  
...  
2007 ◽  
Vol 22 (22) ◽  
pp. 3838-3851 ◽  
Author(s):  
R. A. KISHEK ◽  
G. BAI ◽  
S. BERNAL ◽  
D. FELDMAN ◽  
T. F. GODLOVE ◽  
...  

New coherent radiation sources in the hard X-ray and Terahertz regimes promise exciting new developments in science, as previously dark areas of the spectrum are brightly illuminated. Ultra-short, ultra-bright radiation packets can probe the structure of matter, and image chemical and biological processes well beyond the present state of the art. Production of this coherent radiation, however, places an unprecedented challenge on the production and acceleration of high-quality electron beams. To deliver a nano-Coulomb of charge with an emittance of less than one micron, while transporting the beam through long sections of acceleration and compression, is the prerequisite for unlocking the gates of this promising new science. Using a low-energy electron storage ring, we deliberately enhance the space charge force while slowing down the time-scale to easily measurable levels so as to maximize our understanding of the particle dynamics necessary for producing bright beams.


Author(s):  
D. A. Jaroszynski ◽  
B. Ersfeld ◽  
M. R. Islam ◽  
E. Brunetti ◽  
R. P. Shanks ◽  
...  

1988 ◽  
Vol 154 (2) ◽  
pp. 341
Author(s):  
M.I. Ryazanov

2020 ◽  
Vol 634 ◽  
pp. A5 ◽  
Author(s):  
Jordi José ◽  
Steven N. Shore ◽  
Jordi Casanova

Context. High-resolution spectroscopy has revealed large concentrations of CNO and sometimes other intermediate-mass elements (e.g., Ne, Na, Mg, or Al, for ONe novae) in the shells ejected during nova outbursts, suggesting that the solar composition material transferred from the secondary mixes with the outermost layers of the underlying white dwarf during thermonuclear runaway. Aims. Multidimensional simulations have shown that Kelvin-Helmholtz instabilities provide self-enrichment of the accreted envelope with material from the outermost layers of the white dwarf, at levels that agree with observations. However, the Eulerian and time-explicit nature of most multidimensional codes used to date and the overwhelming computational load have limited their applicability, and no multidimensional simulation has been conducted for a full nova cycle. Methods. This paper explores a new methodology that combines 1D and 3D simulations. The early stages of the explosion (i.e., mass-accretion and initiation of the runaway) were computed with the 1D hydrodynamic code SHIVA. When convection extended throughout the entire envelope, the structures for each model were mapped into 3D Cartesian grids and were subsequently followed with the multidimensional code FLASH. Two key physical quantities were extracted from the 3D simulations and were subsequently implemented into SHIVA, which was used to complete the simulation through the late expansion and ejection stages: the time-dependent amount of mass dredged-up from the outer white dwarf layers, and the time-dependent convective velocity profile throughout the envelope. Results. This work explores for the first time the effect of the inverse energy cascade that characterizes turbulent convection in nova outbursts. More massive envelopes have been found that are those reported from previous models with pre-enrichment. These result in more violent outbursts, characterized by higher peak temperatures and greater ejected masses, with metallicity enhancements in agreement with observations.


Author(s):  
Chan-Wook Baik ◽  
Ho Young Ahn ◽  
Yongsung Kim ◽  
Jooho Lee ◽  
Seogwoo Hong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document