high resolution spectroscopy
Recently Published Documents


TOTAL DOCUMENTS

1601
(FIVE YEARS 196)

H-INDEX

64
(FIVE YEARS 10)

Author(s):  
Gloria Guilluy ◽  
Alessandro Sozzetti ◽  
Paolo Giacobbe ◽  
Aldo S. Bonomo ◽  
Giuseppina Micela

AbstractSince the first discovery of an extra-solar planet around a main-sequence star, in 1995, the number of detected exoplanets has increased enormously. Over the past two decades, observational instruments (both onboard and on ground-based facilities) have revealed an astonishing diversity in planetary physical features (i. e. mass and radius), and orbital parameters (e.g. period, semi-major axis, inclination). Exoplanetary atmospheres provide direct clues to understand the origin of these differences through their observable spectral imprints. In the near future, upcoming ground and space-based telescopes will shift the focus of exoplanetary science from an era of “species discovery” to one of “atmospheric characterization”. In this context, the Atmospheric Remote-sensing Infrared Exoplanet Large (Ariel) survey, will play a key role. As it is designed to observe and characterize a large and diverse sample of exoplanets, Ariel will provide constraints on a wide gamut of atmospheric properties allowing us to extract much more information than has been possible so far (e.g. insights into the planetary formation and evolution processes). The low resolution spectra obtained with Ariel will probe layers different from those observed by ground-based high resolution spectroscopy, therefore the synergy between these two techniques offers a unique opportunity to understanding the physics of planetary atmospheres. In this paper, we set the basis for building up a framework to effectively utilise, at near-infrared wavelengths, high-resolution datasets (analyzed via the cross-correlation technique) with spectral retrieval analyses based on Ariel low-resolution spectroscopy. We show preliminary results, using a benchmark object, namely HD 209458 b, addressing the possibility of providing improved constraints on the temperature structure and molecular/atomic abundances.


2022 ◽  
Vol 61 (01) ◽  
Author(s):  
Pornapa Artsang ◽  
Christophe Buisset ◽  
Panomsak Meemon ◽  
Pakakaew Rittipruk ◽  
Sirinrat Sithajan ◽  
...  

2022 ◽  
Vol 130 (3) ◽  
pp. 353
Author(s):  
А.Ч. Измайлов

By analogy with the well-tested method of high-resolution spectroscopy in thin gas cells for the processes of optical pumping of atoms, this work shows the possibility of detecting narrow sub-Doppler optical resonances caused directly by straight photoionization of atoms (or molecules) in such cells. The structure of the established nontrivial resonances substantially depends on the probability of photoionization of atoms and dimensions of such a cell, the internal thickness of which is many times smaller than its diameter. Of particular interest is the broadening of the considered sub-Doppler resonances, which is determined directly by the photoionization cross section of atoms and the intensity of radiation causing ionization. Under certain conditions, such photoionization broadening can be measured experimentally with high accuracy, as a result of which it is possible to obtain new important information about ionization processes in atoms and molecules.


2021 ◽  
Vol 12 (1) ◽  
pp. 285
Author(s):  
Enkeleda Balliu ◽  
Magnus Engholm ◽  
Michel Digonnet ◽  
Hans-Erik Nilsson

Single-frequency lasers are essential for high-resolution spectroscopy and sensing applications as they combine high-frequency stability with low noise and high output power stability. For many of these applications, there is increasing interest in power-scaling single-frequency sources, both in the near-infrared and visible spectral range. We report the second-harmonic generation of 670 µJ at 532 nm of a single-frequency fiber amplifier signal operating in the quasi-continuous-wave mode in a 10-mm periodically poled Mg-doped lithium niobate (MgO:PPLN) crystal, while increasing compactness. To the best of our knowledge, this is the highest pulse energy generated in this crystal, which may find applications in the visible and UV such as remote Raman spectroscopy.


2021 ◽  
Vol 104 (6) ◽  
Author(s):  
R. Lambo ◽  
C.-Y. Xu ◽  
S. T. Pratt ◽  
H. Xu ◽  
J. C. Zappala ◽  
...  

2021 ◽  
Vol 11 (24) ◽  
pp. 11930
Author(s):  
Viktoras Papadimas ◽  
Christos Doudesis ◽  
Panagiotis Svarnas ◽  
Polycarpos K. Papadopoulos ◽  
George P. Vafakos ◽  
...  

In the present work, a single dielectric barrier discharge (SDBD)-based actuator is developed and experimentally tested by means of various diagnostic techniques. Flexible dielectric barriers and conductive paint electrodes are used, making the design concept applicable to surfaces of different aerodynamic profiles. A technical drawing of the actuator is given in detail. The plasma is sustained by audio frequency sinusoidal high voltage, while it is probed electrically and optically. The consumed electric power is measured, and the optical emission spectrum is recorded in the ultraviolet–near infrared (UV–NIR) range. High-resolution spectroscopy provides molecular rotational distributions, which are treated appropriately to evaluate the gas temperature. The plasma-induced flow field is spatiotemporally surveyed with pitot-like tube and schlieren imaging. Briefly, the actuator consumes a mean power less than 10 W and shows a fair stability over one day, the average temperature of the gas above its surface is close to 400 K, and the fluid speed rises to 4.5 m s−1. A long, thin layer (less than 1.5 mm) of laminar flow is unveiled on the actuator surface. This thin layer is interfaced with an outspread turbulent flow field, which occupies a centimeter-scale area. Molecular nitrogen-positive ions appear to be part of the charged heavy species in the generated filamentary discharge, which can transfer energy and momentum to the surrounding air molecules.


Author(s):  
Arthur Alencastro Puls ◽  
Luca Casagrande ◽  
Stephanie Monty ◽  
David Yong ◽  
Fan Liu ◽  
...  

Abstract In this work we combine information from solar-like oscillations, high-resolution spectroscopy and Gaia astrometry to derive stellar ages, chemical abundances and kinematics for a group of seven metal-poor Red Giants and characterise them in a multidimensional chrono-chemo-dynamical space. Chemical abundance ratios were derived through classical spectroscopic analysis employing 1D LTE atmospheres on Keck/HIRES spectra. Stellar ages, masses and radii were calculated with grid-based modelling, taking advantage of availability of asteroseismic information from Kepler. The dynamical properties were determined with Galpy using Gaia EDR3 astrometric solutions. Our results suggest that underestimated parallax errors make the effect of Gaia parallaxes more important than different choices of model grid or – in the case of stars ascending the RGB – mass-loss prescription. Two of the stars in this study are identified as potentially evolved halo blue stragglers. Four objects are likely members of the accreted Milky Way halo, and their possible relationship with known accretion events is discussed.


2021 ◽  
Vol 34 ◽  
pp. 59-64
Author(s):  
A.S. Nodyarov ◽  
A.S. Miroshnichenko ◽  
S.A. Khokhlov ◽  
S.V. Zharikov ◽  
N. Manset ◽  
...  

Optical high-resolution spectroscopic observations of the emission-line star MWC645 are presented. The spectrum exhibits strong variable double-peaked Balmer emission lines as well as low-excitation emission lines of FeII, [FeII], and [OI] which are signatures of the B[e] phenomenon, while lines of helium have not been found. In addition to the emission lines, for the first time we identified absorption lines of neutral metals (e.g., LiI 6708  A, CaI 6717 A, and a number of FeI and TiI lines) that indicate the presence of a cool component in the system. The heliocentric radial velocity measured in our best spectrum was found to be −65.1±1.0 kms −1 for the emission lines and −23.2±0.4 kms −1 for the absorption lines. Using a combination of photometric and spectroscopic data as well as the Gaia EDR3 distance (D=6.5±0.9 kpc), we disentangled the component contributions and estimated their temperatures and luminosities (∼15000 K and ∼4000 K, log L/L ? = 3.8±0.2 and 2.8±0.2 for the hot and cool component, respectively).


2021 ◽  
Vol 923 (2) ◽  
pp. 183
Author(s):  
Haining Li

Abstract This work presents a first attempt to apply fuzzy cluster analysis (FCA) to analyzing stellar spectra. FCA is adopted to categorize line indices measured from LAMOST low-resolution spectra, and automatically remove the least metallicity-sensitive indices. The FCA-processed indices are then transferred to the artificial neural network (ANN) to derive metallicities for 147 very metal-poor (VMP) stars that have been analyzed by high-resolution spectroscopy. The FCA-ANN method could derive robust metallicities for VMP stars, with a precision of ∼0.2 dex compared with high-resolution analysis. The recommended FCA threshold value λ for this test is between 0.9965 and 0.9975. After reducing the dimension of the line indices through FCA, the derived metallicities are still robust, with no loss of accuracy, and the FCA-ANN method performs stably for different spectral quality from [Fe/H] ∼ −1.8 down to −3.5. Compared with traditional classification methods, FCA considers ambiguity in groupings and noncontinuity of data, and is thus more suitable for observational data analysis. Though this early test uses FCA to analyze low-resolution spectra, and feeds the input to the ANN method to derive metallicities, FCA should be able to, in the large data era, also analyze slitless spectroscopy and multiband photometry, and prepare the input for methods not limited to ANN, in the field of stellar physics for other studies, e.g., stellar classification, identification of peculiar objects. The literature-collected high-resolution sample can help improve pipelines to derive stellar metallicities, and systematic offsets in metallicities for VMP stars for three published LAMOST catalogs have been discussed.


2021 ◽  
Vol 257 (2) ◽  
pp. 45
Author(s):  
Chih-Chun Hsu ◽  
Adam J. Burgasser ◽  
Christopher A. Theissen ◽  
Christopher R. Gelino ◽  
Jessica L. Birky ◽  
...  

Abstract We report multiepoch radial velocities, rotational velocities, and atmospheric parameters for 37 T-type brown dwarfs observed with Keck/NIRSPEC. Using a Markov Chain Monte Carlo forward-modeling method, we achieve median precisions of 0.5 and 0.9 km s−1 for radial and rotational velocities, respectively. All of the T dwarfs in our sample are thin-disk brown dwarfs. We confirm previously reported moving group associations for four T dwarfs. However, the lack of spectral indicators of youth in two of these sources suggests that these are chance alignments. We confirm two previously unresolved binary candidates, the T0+T4.5 2MASS J11061197+2754225 and the L7+T3.5 2MASS J21265916+7617440, with orbital periods of 4 and 12 yr, respectively. We find a kinematic age of 3.5 ± 0.3 Gyr for local T dwarfs, consistent with nearby late M dwarfs (4.1 ± 0.3 Gyr). Removal of thick-disk L dwarfs in the local ultracool dwarf sample gives a similar age for L dwarfs (4.2 ± 0.3 Gyr), largely resolving the local L dwarf age anomaly. The kinematic ages of local late M, L, and T dwarfs can be accurately reproduced with population simulations incorporating standard assumptions of the mass function, star formation rate, and brown dwarf evolutionary models. A kinematic dispersion break is found at the L4–L6 subtypes, likely reflecting the terminus of the stellar main sequence. We provide a compilation of precise radial velocities for 172 late M, L, and T dwarfs within ∼20 pc of the Sun.


Sign in / Sign up

Export Citation Format

Share Document