Frequency regulation for a power system with wind power and battery energy storage

Author(s):  
Liang Liang ◽  
Jin Zhong ◽  
Zaibin Jiao
Author(s):  
Rafael Sebastián ◽  
Jerónimo Quesada

"This study presents the modelling and dynamic simulation of an Isolated Wind Power System (IWPS) consisting of a Wind Turbine Generator (WTG), a synchronous machine (SM), consumer load, dump load (DL) and a Battery Energy Storage System (BESS). First the IWPS architecture and the dynamic models of the IWPS components are described. Second, the control requirements for frequency regulation of the IWPS are studied and a PID regulator to govern the active power stored+dumped by the BESS+DL combination or supplied by the BESS along with a power sharing algorithm between the BESS and DL is presented. Finally the IWPS is simulated facing to variations to load and WTG power. The simulation results are given showing graphs of the main electrical variables in the IWPS: system frequency and voltage and active power in each component. The results show how the BESS or BESS+DL combination regulates correctly the isolated system frequency. The results also show that the BESS improves the IWPS reliability when compared with the frequency control obtained using only the DL."


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4650
Author(s):  
Martha N. Acosta ◽  
Francisco Gonzalez-Longatt ◽  
Juan Manuel Roldan-Fernandez ◽  
Manuel Burgos-Payan

The massive integration of variable renewable energy (VRE) in modern power systems is imposing several challenges; one of them is the increased need for balancing services. Coping with the high variability of the future generation mix with incredible high shares of VER, the power system requires developing and enabling sources of flexibility. This paper proposes and demonstrates a single layer control system for coordinating the steady-state operation of battery energy storage system (BESS) and wind power plants via multi-terminal high voltage direct current (HVDC). The proposed coordinated controller is a single layer controller on the top of the power converter-based technologies. Specifically, the coordinated controller uses the capabilities of the distributed battery energy storage systems (BESS) to store electricity when a logic function is fulfilled. The proposed approach has been implemented considering a control logic based on the power flow in the DC undersea cables and coordinated to charging distributed-BESS assets. The implemented coordinated controller has been tested using numerical simulations in a modified version of the classical IEEE 14-bus test system, including tree-HVDC converter stations. A 24-h (1-min resolution) quasi-dynamic simulation was used to demonstrate the suitability of the proposed coordinated control. The controller demonstrated the capacity of fulfilling the defined control logic. Finally, the instantaneous flexibility power was calculated, demonstrating the suitability of the proposed coordinated controller to provide flexibility and decreased requirements for balancing power.


2013 ◽  
Vol 14 (3) ◽  
pp. 255-264 ◽  
Author(s):  
Y Minh Nguyen ◽  
Yong Tae Yoon

Abstract Wind power producers face many regulation costs in deregulated environment, which remarkably lowers the value of wind power in comparison with the conventional sources. One of these costs is associated with the real-time variation of power output and being paid in frequency control market according to the variation band. In this regard, this paper presents a new approach to the scheduling and operation of battery energy storage installed in wind generation system. This approach depends on the statistic data of wind generation and the prediction of frequency control market prices to determine the optimal charging and discharging of batteries in real-time, which ultimately gives the minimum cost of frequency regulation for wind power producers. The optimization problem is formulated as the trade-off between the decrease in regulation payment and the increase in the cost of using battery energy storage. The approach is illustrated in the case study and the results of simulation show its effectiveness.


2016 ◽  
Vol 14 (9) ◽  
pp. 4035-4042 ◽  
Author(s):  
Michael Andres Hernandez Navas ◽  
Fredy Lozada G. ◽  
Jose Luis Azcue Puma ◽  
Jose A. Torrico A. ◽  
Alfeu J. Sguarezi Filho

Sign in / Sign up

Export Citation Format

Share Document