Small signal stability and coherency analysis of northern regional power grid of India

Author(s):  
Lalit Kumar ◽  
Nand Kishor
2013 ◽  
Vol 441 ◽  
pp. 258-262
Author(s):  
Lin Lin Yu ◽  
Yu Fei Rao ◽  
Shi Qian Wang

With the rapid growth in the size of Henan grid, in the context of UHV networking, Henan power grid operation is facing a more complex mechanism and operating characteristics. Risks affecting the security and stability will be more subtle. There are more and more problems in frequency oscillation. The power system has much more generators and dimension after interconnection. Small signal stability analyzing eigenvalue complex and longer, which greatly reduces the work efficiency. This paper which based on Henan power system stability diagnostic platform developed technology based on multi-band parallel algorithm for small signal stability analysis. The analysis of the small signal stability eigenvalue calculation is assigned to a different platform computing nodes simultaneously. Then this method is applied to Henan grid in the year of 2012. The results show that the small signal stability algorithm which based on the multi-band can ensure the correctness of calculations. Simultaneously, calculation time is greatly reduced and the work efficiency is improved. The practice has a strong role in the promotion.


2013 ◽  
Vol 805-806 ◽  
pp. 393-396
Author(s):  
Zhen Yu Xu ◽  
Zhen Qiao ◽  
Qian He ◽  
Xu Zhang ◽  
Jing Qi Su

With the penetration of wind energy is becoming higher and higher in power grid, it is very important to investigate the impact of wind generations on small signal stability. In this paper, a complete small signal model of wind turbine with direct-drive permanent magnet generator is built to study the impact of large-scale wind farms on the small signal stability of power system. By means of simulation and eigenvalue analysis, an actual power system is investigated, and the damping characteristic of power grid under different wind power penetration is discussed.


2021 ◽  
Vol 11 (3) ◽  
pp. 1205
Author(s):  
Song Ke ◽  
Tao Lin ◽  
Yibiao Sheng ◽  
Hui Du ◽  
Shuitian Li ◽  
...  

Since the development of renewable power generation, Sub/Super-Synchronous Control Interac-tion (SSCI), has attracted wide attention. Sub/super-synchronous oscillation (SSO) belongs to the category of small signal stability, and its characteristics are closely related to the operation mode and controller parameters in power grid. The operation mode of renewable power system changes frequently, a method to construct controller parameter stability region (PSR) is proposed for online assessment of the matching degree of controller parameters in power grid under current operation mode. Based on Gerschgorin disk theorem (GDT), eigenvalue distribution range of the system state matrix is estimated, thus the feasible value set of the controller parameter is deduced through small signal stability criterion. The stability margin evaluation index is proposed for guiding the prevention and control of SSO. Specifically, the preconditions of the application of the GDT on the PSR construction are discussed, and a construction method of transition matrix is proposed for the PSR construction. Furthermore, to reduce the conservativeness of PSR, an extension method for PSR is given. Finally, the validity of the proposed method is verified by a realistic benchmark. The efficiency of the proposed method is highlighted by comparing with the point-wise eigenvalue calculation of the state matrix.


Sign in / Sign up

Export Citation Format

Share Document