Saturation behavior of the light-induced defect density in hydrogenated amorphous silicon (solar cells)

2002 ◽  
Author(s):  
H.R. Park ◽  
J.Z. Liu ◽  
P. Roca i Cabarrocas ◽  
A. Maruyama ◽  
M. Isomura ◽  
...  
2001 ◽  
Vol 664 ◽  
Author(s):  
Richard S. Crandall ◽  
Jeffrey Yang ◽  
Subhendu Guha

ABSTRACTThe fundamental ingredient lacking in solar cell modeling is the spatial distribution of defects. To gain this information, we use drive-level capacitance profiling (DLCP) on hydrogenated amorphous silicon solar cells. We find the following: Near the p-i interface the defect density is high, decreasing rapidly into the interior, reaching low values in the central region of the cell, and rising rapidly again at the n-i interface. The states in the central region are neutral dangling-bond defects whose density agrees with those typically found in similar films. However, those near the interfaces with the doped layers are charged dangling bonds in agreement with the predictions of defect thermodynamics. We correlate the changes in solar cell efficiency owing to intense illumination with changes in the defect density throughout the cell. Defects in the central region of the cell increase to values typically found in companion films. We describe the measurements and interpretation of DLCP for solar cells with the aid of a solar cell simulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
F. X. Abomo Abega ◽  
A. Teyou Ngoupo ◽  
J. M. B. Ndjaka

Numerical modelling is used to confirm experimental and theoretical work. The aim of this work is to present how to simulate ultrathin hydrogenated amorphous silicon- (a-Si:H-) based solar cells with a ITO BRL in their architectures. The results obtained in this study come from SCAPS-1D software. In the first step, the comparison between the J-V characteristics of simulation and experiment of the ultrathin a-Si:H-based solar cell is in agreement. Secondly, to explore the impact of certain properties of the solar cell, investigations focus on the study of the influence of the intrinsic layer and the buffer layer/absorber interface on the electrical parameters ( J SC , V OC , FF, and η ). The increase of the intrinsic layer thickness improves performance, while the bulk defect density of the intrinsic layer and the surface defect density of the buffer layer/ i -(a-Si:H) interface, respectively, in the ranges [109 cm-3, 1015 cm-3] and [1010 cm-2, 5 × 10 13  cm-2], do not affect the performance of the ultrathin a-Si:H-based solar cell. Analysis also shows that with approximately 1 μm thickness of the intrinsic layer, the optimum conversion efficiency is 12.71% ( J SC = 18.95   mA · c m − 2 , V OC = 0.973   V , and FF = 68.95 % ). This work presents a contribution to improving the performance of a-Si-based solar cells.


1996 ◽  
Author(s):  
A. H. Mahan ◽  
B. P. Nelson ◽  
E. Iwaniczko ◽  
Q. Wang ◽  
E. C. Molenbroek ◽  
...  

2012 ◽  
Vol 112 (2) ◽  
pp. 023113 ◽  
Author(s):  
Chung-I Ho ◽  
Dan-Ju Yeh ◽  
Vin-Cent Su ◽  
Chieh-Hung Yang ◽  
Po-Chuan Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document