Target Tracking in Glint Noise Environment using Nonlinear Non-Gaussian Kalman Filter

Author(s):  
I. Bilik ◽  
J. Tabrikian
2021 ◽  
Vol 17 (3) ◽  
pp. 1-24
Author(s):  
Kavitha Lakshmi M. ◽  
Koteswara Rao S. ◽  
Subrahmanyam Kodukula

In underwater surveillance, three-dimensional target tracking is a challenging task. The angles-only measurements (i.e., bearing and elevation) obtained by hull mounted sensors are considered to appraise the target motion parameter. Due to noise in measurements and nonlinearity of the system, it is very hard to find out the target location. For many applications, UKF is best estimator that remaining algorithms. Recently, cubature Kalman filter (CKF) is also popular. It is proposed to use UKF (unscented Kalman filter) and CKF (cubature Kalman filter) algorithms that minimize the noise in measurements. So far, researchers carried out this work (target tracking) in Gaussian noise environment, whereas in this paper same work is carried out for non-Gaussian noise environment. The performance evaluation of the filters using Monte-Carlo simulation and Cramer-Rao lower bound (CRLB) is accomplished and the results are analyzed. Result shows that UKF is well suitable for highly nonlinear systems than CKF.


2013 ◽  
Vol 683 ◽  
pp. 824-827
Author(s):  
Tian Ding Chen ◽  
Chao Lu ◽  
Jian Hu

With the development of science and technology, target tracking was applied to many aspects of people's life, such as missile navigation, tanks localization, the plot monitoring system, robot field operation. Particle filter method dealing with the nonlinear and non-Gaussian system was widely used due to the complexity of the actual environment. This paper uses the resampling technology to reduce the particle degradation appeared in our test. Meanwhile, it compared particle filter with Kalman filter to observe their accuracy .The experiment results show that particle filter is more suitable for complex scene, so particle filter is more practical and feasible on target tracking.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Hongjian Wang ◽  
Ying Wang ◽  
Cun Li ◽  
Juan Li ◽  
Qing Li ◽  
...  

The Gaussian mixture filter can solve the non-Gaussian problem of target tracking in complex environment by the multimode approximation method, but the weights of the Gaussian component of the conventional Gaussian mixture filter are only updated with the arrival of the measurement value in the measurement update stage. When the nonlinear degree of the system is high or the measurement value is missing, the weight of the Gauss component remains unchanged, and the probability density function of the system state cannot be accurately approximated. To solve this problem, this paper proposes an algorithm to update adaptive weights for the Gaussian components of a Gaussian mixture cubature Kalman filter (CKF) in the time update stage. The proposed method approximates the non-Gaussian noise by splitting the system state, process noise, and observation noise into several Gaussian components and updates the weight of the Gaussian components in the time update stage. The method contributes to obtaining a better approximation of the posterior probability density function, which is constrained by the substantial uncertainty associated with the measurements or ambiguity in the model. The estimation accuracy of the proposed algorithm was analyzed using a Taylor expansion. A series of extensive trials was performed to assess the estimation precision corresponding to various algorithms. The results based on the data pertaining to the lake trial of an unmanned underwater vehicle (UUV) demonstrated the superiority of the proposed algorithm in terms of its better accuracy and stability compared to those of conventional tracking algorithms, along with the associated reasonable computational time that could satisfy real-time tracking requirements.


2006 ◽  
Vol 03 (04) ◽  
pp. 321-328
Author(s):  
GUIXI LIU ◽  
ENKE GAO ◽  
CHUNYU FAN

The particle filter can deal with nonlinear/non-Gaussian problems and it has been introduced to the algorithm of the interacting multiple model (IMM) for higher precision. The general IMM based on Kalman filter or extended Kalman filter (IMMEKF) cannot deal with non-Gaussian problems and also does not work as well as the IMM based on the particle filter (IMMPF) for the nonlinear problems. However the problem of the particle filter is its expensive computation, because a particle filter usually has a lot of particles, which will increase the computation load greatly. Here an algorithm of IMM combining the Kalman filter and the particle filter (IMMK-PF) for maneuvering target tracking is proposed to improve the computation efficiency as compared to the IMMPF. For nonlinear/Gaussian problems the new algorithm is expected to have a good performance as the IMMPF, while for linear problems it will perform similarly to the IMMEKF and will work better than the IMMPF.


Author(s):  
Baojian Yang ◽  
Lu Cao ◽  
Dechao Ran ◽  
Bing Xiao

Due to unavoidable factors, heavy-tailed noise appears in satellite attitude estimation. Traditional Kalman filter is prone to performance degradation and even filtering divergence when facing non-Gaussian noise. The existing robust algorithms have limited accuracy. To improve the attitude determination accuracy under non-Gaussian noise, we use the centered error entropy (CEE) criterion to derive a new filter named centered error entropy Kalman filter (CEEKF). CEEKF is formed by maximizing the CEE cost function. In the CEEKF algorithm, the prior state values are transmitted the same as the classical Kalman filter, and the posterior states are calculated by the fixed-point iteration method. The CEE EKF (CEE-EKF) algorithm is also derived to improve filtering accuracy in the case of the nonlinear system. We also give the convergence conditions of the iteration algorithm and the computational complexity analysis of CEEKF. The results of the two simulation examples validate the robustness of the algorithm we presented.


Sign in / Sign up

Export Citation Format

Share Document